本数据库通过收集和整理最新科研文献信息而得,供了解领域前沿进展之用。数据源自 PubMed Data ,每日自动更新(使用关键词“['deep learning']”过滤),已收录文献数量参见 统计表格。表格内容由 GPT 自动整理,可能存在错误或遗漏,请使用时务必注意核实!
如有建议或合作意向,欢迎联系 linlin.yan(AT)bioinfo.app 或 微信 yanlinlin82。本项目遵循 MIT 许可 发布,欢迎下载 源码 自行修改使用。如觉得不错,还请不吝 给我打赏,你的支持是我继续创新的重要动力!


除通过在线浏览外,为方便用户离线查阅,本站也提供 付费下载(定价19.9元)。之所以考虑收费,是因为批量扫描这些文献并整理也是有一定成本的,还请理解并多多支持。本站数据会持续更新,而仅需一次付费,未来就可以随时重新下载到最新版本数据。
| 序号 | 推送日期 | 文章 | 类型 | 简述 | 创新点 | 不足 | 研究目的 | 研究对象 | 领域 | 病种 | 技术 | 模型 | 数据类型 | 样本量 | 算法框架 | 模型架构 | 性能指标 | 计算资源 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 16521 | 2025-03-13 |
Rewiring protein sequence and structure generative models to enhance protein stability prediction
2025-Feb-18, bioRxiv : the preprint server for biology
DOI:10.1101/2025.02.13.638154
PMID:40027759
|
研究论文 | 本文介绍了一种名为SPURS的新型深度学习框架,通过整合两种通用蛋白质生成模型(ESM和ProteinMPNN),提升了蛋白质稳定性预测的准确性 | SPURS通过轻量级神经网络模块将ProteinMPNN学习到的结构表示重新连接到ESM的注意力层,从而增强了ESM的序列表示学习能力,实现了从序列和结构数据中利用进化模式进行稳定性预测 | 尽管SPURS在多个基准数据集上表现出色,但其在蛋白质稳定性预测中的潜力仍需进一步探索,特别是在更广泛的蛋白质功能预测方面 | 提升蛋白质稳定性预测的准确性,以更好地理解人类疾病并设计用于临床和工业应用的有用蛋白质 | 蛋白质 | 机器学习 | NA | 深度学习 | ESM, ProteinMPNN | 序列数据, 结构数据 | 基于最近发布的大规模热稳定性数据集进行训练和评估 | NA | NA | NA | NA |
| 16522 | 2025-03-13 |
Diagnostic accuracy of artificial intelligence models in detecting congenital heart disease in the second-trimester fetus through prenatal cardiac screening: a systematic review and meta-analysis
2025, Frontiers in cardiovascular medicine
IF:2.8Q2
DOI:10.3389/fcvm.2025.1473544
PMID:40066351
|
系统综述与荟萃分析 | 本文通过系统综述和荟萃分析评估了人工智能模型在产前心脏筛查中检测胎儿先天性心脏病的诊断准确性 | 首次系统评估人工智能模型在胎儿先天性心脏病筛查中的表现,并进行了荟萃分析 | 研究样本量有限,且需要更大数据集和更多样化人群的前瞻性研究来验证结果 | 评估人工智能模型在产前心脏筛查中检测先天性心脏病的诊断准确性 | 胎儿先天性心脏病 | 医学影像分析 | 先天性心脏病 | 超声和超声心动图 | 深度学习模型 | 图像 | 9项研究,共374项研究筛选 | NA | NA | NA | NA |
| 16523 | 2025-03-13 |
Advancements in cache management: a review of machine learning innovations for enhanced performance and security
2025, Frontiers in artificial intelligence
IF:3.0Q2
DOI:10.3389/frai.2025.1441250
PMID:40070808
|
review | 本文综述了机器学习在缓存管理中的应用,包括优化缓存性能和增强安全性 | 探讨了从基于强化学习的缓存替换策略到LSTM模型预测内容特性以做出缓存决策的多种机器学习技术 | 未提及具体实验数据或样本量,可能缺乏实证支持 | 研究机器学习在缓存管理中的应用,以优化性能和增强安全性 | 缓存管理系统 | machine learning | NA | reinforcement learning, LSTM, imitation learning, neural networks | LSTM, neural networks | NA | NA | NA | NA | NA | NA |
| 16524 | 2025-03-13 |
Deep Learning Based Shear Wave Detection and Segmentation Tool for Use in Point-of-Care for Chronic Liver Disease Assessments
2024-12, Ultrasound in medicine & biology
|
研究论文 | 本研究开发了一种基于深度学习的剪切波检测和分割工具,用于在慢性肝病评估的即时护理环境中提高肝脏组织的表征准确性 | 该研究创新地使用深度学习算法(U-Net架构)来检测和分割肝脏组织中的剪切波,以提高肝脏硬度和超声衰减测量的准确性 | 研究样本量相对较小,仅包含103名患者的15,045张图像和36名志愿者的4,429张图像,可能影响结果的普遍性 | 开发并测试一种新的软件工具,用于在即时护理环境中更准确地评估代谢功能障碍相关的脂肪性肝病(MASLD)患者的肝脏状况 | 代谢功能障碍相关的脂肪性肝病(MASLD)患者和志愿者 | 数字病理 | 慢性肝病 | 深度学习 | U-Net | 图像 | 103名患者的15,045张图像和36名志愿者的4,429张图像 | NA | NA | NA | NA |
| 16525 | 2025-03-13 |
Automated Field of Interest Determination for Quantitative Ultrasound Analyses of Cervical Tissues: Toward Real-time Clinical Translation in Spontaneous Preterm Birth Risk Assessment
2024-12, Ultrasound in medicine & biology
|
研究论文 | 本研究开发了一种自动确定宫颈感兴趣区域(Auto FOI)的方法,以替代手动绘制感兴趣区域(Manual FOI),用于宫颈定量超声(QUS)分析,以评估自发性早产风险 | 开发了一种基于深度学习的自动确定宫颈感兴趣区域的方法,减少了手动操作的需求,提高了临床应用的可行性 | 研究仅基于527名孕妇的宫颈超声数据,样本量相对较小,且未涉及其他潜在影响因素的分析 | 评估自动确定宫颈感兴趣区域(Auto FOI)与手动绘制感兴趣区域(Manual FOI)在定量超声分析中的一致性,并探讨Auto FOI替代Manual FOI的可行性 | 527名孕妇的宫颈超声数据 | 数字病理 | 早产 | 定量超声(QUS) | 深度学习模型 | 图像 | 527名孕妇的宫颈超声数据 | NA | NA | NA | NA |
| 16526 | 2025-03-13 |
Enhancing Multi-Object Detection in Ultrasound Images Through Semi-Supervised Learning, Focal Loss and Relation of Frame
2024-12, Ultrasound in medicine & biology
|
研究论文 | 本文提出了一种基于深度学习的自动化注释系统,用于实时识别肌肉骨骼解剖结构,并通过半监督学习和焦点损失方法提高检测精度 | 引入了半监督学习(SSL)方法显著减少注释时间,采用焦点损失(FL)方法提高困难结构的检测精度,并在推理阶段利用视频帧的时间连续性提高检测效果 | 未提及具体的数据集规模或模型泛化能力的验证 | 通过深度学习技术实时识别肌肉骨骼解剖结构,提高检测精度和效率 | 肌肉骨骼解剖结构 | 计算机视觉 | 肌肉骨骼疾病 | 深度学习 | 深度学习神经网络 | 超声图像 | 仅使用30%的训练数据实现了与监督学习相当的性能 | NA | NA | NA | NA |
| 16527 | 2025-03-13 |
Robust and Transferable Backdoor Attacks Against Deep Image Compression With Selective Frequency Prior
2024-Nov-28, IEEE transactions on pattern analysis and machine intelligence
IF:20.8Q1
DOI:10.1109/TPAMI.2024.3507873
PMID:40030332
|
研究论文 | 本文提出了一种针对深度学习图像压缩模型的多触发器后门攻击方法,利用离散余弦变换(DCT)在频域注入触发器,并设计了多种攻击目标以适应不同场景 | 提出了一种基于频率的触发器注入模型,设计了动态损失函数以优化攻击目标,并增强了跨模型和跨域的可转移性 | 未提及具体的数据集或样本量,可能限制了方法的普适性验证 | 研究深度学习图像压缩模型的后门攻击方法及其防御策略 | 深度学习图像压缩模型 | 计算机视觉 | NA | 离散余弦变换(DCT) | 深度学习模型 | 图像 | NA | NA | NA | NA | NA |
| 16528 | 2025-03-13 |
Advancing Metaverse-Based Healthcare With Multimodal Neuroimaging Fusion Via Multi-Task Adversarial Variational Autoencoder for Brain Age Estimation
2024-Nov-25, IEEE journal of biomedical and health informatics
IF:6.7Q1
DOI:10.1109/JBHI.2024.3505421
PMID:40030298
|
研究论文 | 本文提出了一种多任务对抗变分自编码器(M-AVAE),用于通过多模态MRI数据整合来增强脑龄预测,以支持基于元宇宙的医疗应用 | M-AVAE通过将潜在变量分离为通用代码和独特代码,有效隔离了共享和模态特定特征,并结合多任务学习以考虑性别特异性衰老差异 | 尽管M-AVAE在脑龄预测上表现出色,但其在功能MRI(fMRI)数据处理上仍面临复杂数据结构和噪声测量的挑战 | 旨在通过多模态MRI数据整合提高脑龄预测的准确性,以支持基于元宇宙的医疗应用 | 脑龄预测,特别是与阿尔茨海默病等年龄相关神经病理学相关的脑龄评估 | 数字病理学 | 阿尔茨海默病 | 多模态MRI数据整合 | 多任务对抗变分自编码器(M-AVAE) | MRI图像 | OpenBHB数据集,一个多站点脑MRI数据集合 | NA | NA | NA | NA |
| 16529 | 2025-03-13 |
Utilizing Neurons to Interrogate Cancer: Integrative Analysis of Cancer Omics Data with Deep Learning Models
2024-Nov-21, IEEE reviews in biomedical engineering
IF:17.2Q1
DOI:10.1109/RBME.2024.3503761
PMID:40030404
|
综述 | 本文探讨了深度学习模型在基础癌症组学研究中的应用进展,包括批量癌症组学数据的分析方法及跨平台数据整合的重要性 | 深入比较了当前在癌症基因组学领域使用的模型,强调了该领域合作和跨学科研究的必要性 | 指出了现有模型的局限性及改进潜力,并探讨了研究空白和未来方向 | 探索深度学习模型在癌症组学研究中的应用 | 癌症组学数据 | 机器学习 | 癌症 | 深度学习 | 深度学习模型 | 组学数据 | NA | NA | NA | NA | NA |
| 16530 | 2025-03-13 |
a Novel Dual-Model Adaptive Continuous Learning Strategy for Wrist-sEMG Real-Time Gesture Recognition
2024-Nov-20, IEEE transactions on neural systems and rehabilitation engineering : a publication of the IEEE Engineering in Medicine and Biology Society
IF:4.8Q1
DOI:10.1109/TNSRE.2024.3502624
PMID:40030229
|
研究论文 | 本文介绍了一种新颖的双模型自适应连续学习(DM-ACL)策略,用于基于手腕的表面肌电图(sEMG)实时手势识别 | 提出了一种半监督在线学习算法,使用kNN模型为实时sEMG信号提供辅助标签,增强了深度学习模型的鲁棒性和适应性 | 未明确提及具体局限性 | 提高基于sEMG的手势识别系统的实用性和实时应用性能 | 手腕sEMG信号 | 机器学习 | NA | sEMG | CNN-LSTM, CNN, kNN | sEMG信号 | 每个手势平均33.6秒至48秒的sEMG数据 | NA | NA | NA | NA |
| 16531 | 2025-03-13 |
DARNet: Deep Attention Module and Residual Block-Based Lung and Colon Cancer Diagnosis Network
2024-Nov-20, IEEE journal of biomedical and health informatics
IF:6.7Q1
DOI:10.1109/JBHI.2024.3502636
PMID:40030219
|
研究论文 | 本文提出了一种基于深度注意力模块和残差块的肺癌和结肠癌诊断网络(DARNet),旨在提高分类的准确性和效率 | DARNet结合了残差块、注意力模块和全连接层,通过贝叶斯优化调整超参数,显著提高了模型的泛化性能和分类准确率 | 未提及模型在更大规模数据集上的表现或实际临床应用中的验证 | 提高肺癌和结肠癌分类的准确性和效率,以支持早期检测和治疗规划 | 肺癌和结肠癌的分类 | 计算机视觉 | 肺癌, 结肠癌 | 深度学习 | DARNet(基于残差块和注意力模块的神经网络) | 图像 | 基准肺癌和结肠癌数据集 | NA | NA | NA | NA |
| 16532 | 2025-03-13 |
A Comprehensive Survey of Forgetting in Deep Learning Beyond Continual Learning
2024-Nov-14, IEEE transactions on pattern analysis and machine intelligence
IF:20.8Q1
DOI:10.1109/TPAMI.2024.3498346
PMID:40030369
|
综述 | 本文全面调查了深度学习中的遗忘现象,超越了持续学习的范畴,探讨了遗忘在生成模型和联邦学习等领域中的表现及其挑战 | 本文创新性地提出遗忘是一把双刃剑,在某些情况下可能是有益的,如隐私保护场景,并通过对遗忘现象的广泛探讨,提供了更细致的理解 | 本文主要是一篇综述,未涉及具体实验或数据验证,可能缺乏实证支持 | 探讨深度学习中的遗忘现象,超越持续学习的范畴,提出新的理解和解决方案 | 深度学习中的遗忘现象 | 机器学习 | NA | NA | NA | NA | NA | NA | NA | NA | NA |
| 16533 | 2025-10-07 |
Deep learning nomogram for predicting neoadjuvant chemotherapy response in locally advanced gastric cancer patients
2024-11, Abdominal radiology (New York)
DOI:10.1007/s00261-024-04331-7
PMID:38796795
|
研究论文 | 开发并验证了一种基于深度学习放射组学的列线图模型,用于预测局部进展期胃癌患者新辅助化疗反应 | 结合手工放射组学特征、深度学习特征和临床特征构建多模态预测模型,并采用多中心数据进行验证 | 回顾性研究设计,样本量相对有限(322例患者) | 预测局部进展期胃癌患者对新辅助化疗的治疗反应 | 局部进展期胃癌患者 | 数字病理 | 胃癌 | 多期相增强CT成像,放射组学分析 | CNN | 医学影像(CT图像),临床数据 | 322例胃癌患者,来自两个医院(2013年1月至2023年6月) | NA | EfficientNet V2 | AUC, 精确召回曲线, 校准曲线, 决策曲线分析 | NA |
| 16534 | 2025-10-07 |
EasyPISA: Automatic Integrated PISA Measurements of Mitral Regurgitation From 2-D Color-Doppler Using Deep Learning
2024-11, Ultrasound in medicine & biology
|
研究论文 | 提出基于深度学习的EasyPISA框架,用于从2D彩色多普勒序列自动进行二尖瓣反流的集成PISA测量 | 首次实现直接从2D彩色多普勒序列自动进行集成PISA测量,解决了非半球形血流汇聚和非全收缩期二尖瓣反流的测量难题 | 样本量相对较小(54名患者),与cMRI的相关性为0.66,相对标准偏差分别为46%和53% | 开发自动化二尖瓣反流量化方法,减少观察者间变异性和工作负担 | 二尖瓣反流患者 | 医学影像分析 | 心血管疾病 | 2D彩色多普勒超声 | CNN | 医学图像 | 196条记录(54名患者)的1171张图像,回顾性应用于26例二尖瓣反流患者检查 | NA | UNet, Attention UNet | 精确度, 召回率, Dice系数, 流率误差, 组内相关系数, 相对标准偏差, AUC | NA |
| 16535 | 2025-10-07 |
Deep Learning With Ultrasound Images Enhance the Diagnosis of Nonalcoholic Fatty Liver
2024-11, Ultrasound in medicine & biology
|
研究论文 | 本研究通过深度学习结合超声图像提升非酒精性脂肪肝的诊断准确性 | 提出结合超声图像特征(回声衰减系数和多普勒效应比率)的多输入深度学习网络框架 | NA | 提高非酒精性脂肪肝疾病的诊断准确性并减少诊断者专业能力和个人偏见的影响 | 非酒精性脂肪肝患者的超声图像 | 计算机视觉 | 非酒精性脂肪肝 | 超声成像 | CNN | 图像 | 710张包含NAFLD的超声图像 | NA | VGG16, ResNet50, Inception-v3 | 准确率, AUC | NA |
| 16536 | 2025-03-13 |
Deep learning model using planar whole-body bone scintigraphy for diagnosis of skull base invasion in patients with nasopharyngeal carcinoma
2024-Oct-09, Journal of cancer research and clinical oncology
IF:2.7Q3
DOI:10.1007/s00432-024-05969-y
PMID:39379746
|
研究论文 | 本研究评估了基于平面全身骨显像的深度学习模型在诊断鼻咽癌患者颅底侵犯中的可靠性 | 首次使用深度学习模型结合平面全身骨显像数据来诊断鼻咽癌患者的颅底侵犯,并展示了其优于核医学专家的诊断能力 | 研究结果主要基于特定数据集,需要进一步的外部验证以确保模型的广泛适用性 | 评估深度学习模型在诊断鼻咽癌患者颅底侵犯中的应用效果 | 新诊断的鼻咽癌患者 | 数字病理 | 鼻咽癌 | 平面全身骨显像 | CNN | 图像 | 多中心研究,具体样本数量未明确 | NA | NA | NA | NA |
| 16537 | 2025-03-13 |
Deep learning-based approaches for multi-omics data integration and analysis
2024-Oct-02, BioData mining
IF:4.0Q1
DOI:10.1186/s13040-024-00391-z
PMID:39358793
|
综述 | 本文回顾了基于深度学习的多组学数据整合和分析方法,并讨论了这些方法的独特能力和新兴趋势 | 本文创新性地将深度学习方法分为非生成式和生成式两大类,并详细讨论了它们在多组学数据整合中的应用和优势 | 本文未涉及具体实验验证,仅进行了方法论的综述和讨论 | 探讨深度学习在多组学数据整合和分析中的应用 | 多组学数据(包括分子组学和影像组学数据) | 机器学习 | NA | 深度学习 | 前馈神经网络、图卷积神经网络、自编码器、变分方法、生成对抗模型、生成预训练模型 | 多组学数据(包括分子组学和影像组学数据) | NA | NA | NA | NA | NA |
| 16538 | 2025-10-07 |
Removing Artifacts in Transcranial Photoacoustic Imaging With Polarized Self-Attention Dense-UNet
2024-10, Ultrasound in medicine & biology
|
研究论文 | 提出一种极化自注意力密集U-Net模型用于去除经颅光声成像中的伪影 | 首次将极化自注意力机制与密集连接U-Net结合用于经颅光声成像伪影去除 | 仅在一层或两层骨板条件下验证,未涉及更复杂颅骨结构 | 提高经颅光声成像质量,消除颅骨引起的信号失真 | 颅骨下方的成像对象 | 医学影像处理 | NA | 光声成像 | 深度学习 | 光声图像 | NA | NA | PSAD-UNet, U-Net | 结构相似性, 峰值信噪比 | NA |
| 16539 | 2025-10-07 |
Transition-zone PSA-density calculated from MRI deep learning prostate zonal segmentation model for prediction of clinically significant prostate cancer
2024-10, Abdominal radiology (New York)
DOI:10.1007/s00261-024-04301-z
PMID:38896250
|
研究论文 | 开发基于MRI的深度学习前列腺分区分割模型,并评估移行区PSA密度对临床显著性前列腺癌的预测价值 | 首次利用深度学习模型自动分割前列腺移行区,并基于此计算TZ-PSAD用于预测临床显著性前列腺癌 | 模型在外部验证集上的性能提升相对有限,需要进一步多中心验证 | 比较传统PSAD与基于深度学习的TZ-PSAD在预测临床显著性前列腺癌方面的性能差异 | 前列腺癌患者 | 数字病理 | 前列腺癌 | MRI, T2加权成像 | 深度学习分割模型 | 医学影像 | 开发集1020例,内部测试集3461例,外部测试集1460例 | NA | NA | Dice系数, AUC | NA |
| 16540 | 2025-10-07 |
Advanced MRI techniques in abdominal imaging
2024-10, Abdominal radiology (New York)
DOI:10.1007/s00261-024-04369-7
PMID:38802629
|
综述 | 本文综述了腹部磁共振成像的先进技术及其临床应用 | 系统总结了包括并行成像、三维采集、压缩感知和深度学习在内的最新腹部MRI技术进展 | NA | 探讨先进MRI技术在腹部成像中的应用和发展 | 腹部MRI技术和图像质量 | 医学影像 | 腹部疾病 | 磁共振成像, 并行成像, 三维采集, 压缩感知, 深度学习 | NA | 医学影像 | NA | NA | NA | NA | NA |