本数据库通过收集和整理最新科研文献信息而得,供了解领域前沿进展之用。数据源自 PubMed Data ,每日自动更新(使用关键词“['deep learning']”过滤),已收录文献数量参见 统计表格。表格内容由 GPT 自动整理,可能存在错误或遗漏,请使用时务必注意核实!
如有建议或合作意向,欢迎联系 linlin.yan(AT)bioinfo.app 或 微信 yanlinlin82。本项目遵循 MIT 许可 发布,欢迎下载 源码 自行修改使用。如觉得不错,还请不吝 给我打赏,你的支持是我继续创新的重要动力!


除通过在线浏览外,为方便用户离线查阅,本站也提供 付费下载(定价19.9元)。之所以考虑收费,是因为批量扫描这些文献并整理也是有一定成本的,还请理解并多多支持。本站数据会持续更新,而仅需一次付费,未来就可以随时重新下载到最新版本数据。
| 序号 | 推送日期 | 文章 | 类型 | 简述 | 创新点 | 不足 | 研究目的 | 研究对象 | 领域 | 病种 | 技术 | 模型 | 数据类型 | 样本量 | 算法框架 | 模型架构 | 性能指标 | 计算资源 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 16841 | 2025-02-12 |
QuanFormer: A Transformer-Based Precise Peak Detection and Quantification Tool in LC-MS-Based Metabolomics
2025-Feb-11, Analytical chemistry
IF:6.7Q1
DOI:10.1021/acs.analchem.4c04531
PMID:39868899
|
研究论文 | 本文介绍了一种基于Transformer架构的深度学习工具QuanFormer,用于在基于液相色谱-质谱联用的代谢组学分析中精确检测和量化峰信号 | QuanFormer结合了卷积神经网络(CNN)的特征提取能力和Transformer架构的全局计算能力,通过使用近20,000个标注的兴趣区域(ROIs)进行数据训练,实现了独特的预测,并在测试集上达到了96.5%的平均精度值 | 尽管QuanFormer在不重新训练的情况下能够区分真假峰的准确率超过90%,但其在更广泛数据集上的泛化能力仍需进一步验证 | 开发一种能够提高代谢组学分析中峰检测和量化准确性的工具 | 液相色谱-质谱联用(LC-MS)数据中的峰信号 | 机器学习 | 乳腺癌 | 液相色谱-质谱联用(LC-MS) | Transformer, CNN | 质谱数据 | 近20,000个标注的兴趣区域(ROIs) | NA | NA | NA | NA |
| 16842 | 2025-02-12 |
Carbon Dioxide Sensing Based on Off-Axis Integrated Cavity Absorption Spectroscopy Combined with the Informer and Multilayer Perceptron Models
2025-Feb-11, Analytical chemistry
IF:6.7Q1
DOI:10.1021/acs.analchem.4c06057
PMID:39882837
|
研究论文 | 本文提出了一种基于离轴积分腔输出光谱(OA-ICOS)和深度学习模型的二氧化碳传感器,结合Informer和多层感知器(MLP)模型进行光谱数据处理和浓度预测 | 结合Informer模型进行光谱时间序列滤波,并使用MLP模型直接从滤波后的光谱数据中提取特征并预测二氧化碳浓度,显著提高了信噪比和检测精度 | 未提及具体的数据集规模或实验环境的多样性,可能影响模型的泛化能力 | 提高基于光谱的二氧化碳传感器的检测精度和信噪比 | 二氧化碳光谱数据 | 光谱学 | NA | 离轴积分腔输出光谱(OA-ICOS) | Informer, 多层感知器(MLP) | 光谱时间序列数据 | 未提及具体样本数量 | NA | NA | NA | NA |
| 16843 | 2025-02-12 |
Diffusion-driven multi-modality medical image fusion
2025-Feb-11, Medical & biological engineering & computing
IF:2.6Q3
DOI:10.1007/s11517-025-03300-6
PMID:39932643
|
研究论文 | 本文提出了一种基于扩散驱动的多模态医学图像融合方法,旨在解决现有深度学习方法在图像细节和颜色信息融合不足的问题 | 提出了一种利用潜在空间中多模态图像信息分布关系的扩散驱动方法,并设计了局部和全局网络(LAGN)以更好地保留不同模态的互补信息 | NA | 提高多模态医学图像融合的质量,以提供更全面的临床诊断信息 | MRI/CT、MRI/PET和MRI/SPECT图像 | 计算机视觉 | NA | 扩散驱动方法 | 局部和全局网络(LAGN) | 医学图像 | 三个数据集(MRI/CT、MRI/PET和MRI/SPECT图像),16名医生和医学生参与评估 | NA | NA | NA | NA |
| 16844 | 2025-02-12 |
Recent Development, Applications, and Patents of Artificial Intelligence in Drug Design and Development
2025-Feb-10, Current drug discovery technologies
|
综述 | 本文综述了人工智能在药物设计和开发中的最新进展、应用及专利 | 本文重点介绍了人工智能和深度学习在药物设计中的创新应用,并讨论了相关专利,与已发表材料形成区分 | NA | 探讨人工智能在药物设计和开发中的应用,以提高药物发现的效率和成功率 | 药物设计和开发 | 机器学习 | NA | 深度学习(DL)、人工神经网络(ANNs) | 深度学习算法、机器学习算法 | 临床试验数据、基因组学数据、蛋白质组学数据、微阵列数据 | NA | NA | NA | NA | NA |
| 16845 | 2025-02-12 |
A multi-model feature fusion based transfer learning with heuristic search for copy-move video forgery detection
2025-Feb-08, Scientific reports
IF:3.8Q1
DOI:10.1038/s41598-025-88592-2
PMID:39922840
|
研究论文 | 本文提出了一种基于多模型特征融合的迁移学习方法,结合启发式搜索,用于检测视频中的复制-移动伪造 | 提出了一种新的ECMVFD-FTLTDO模型,结合了ResNet50、MobileNetV3和EfficientNetB7三种模型的特征融合迁移学习过程,并使用Tasmanian Devil Optimizer优化ERNN分类器参数 | 模型对训练数据的依赖性较高,且需要合适的超参数范围 | 检测和分类视频内容中的复制-移动伪造 | 视频内容 | 计算机视觉 | NA | 迁移学习 | ResNet50, MobileNetV3, EfficientNetB7, ERNN | 视频 | GRIP和VTD数据集 | NA | NA | NA | NA |
| 16846 | 2025-02-12 |
Deep learning based gasket fault detection: a CNN approach
2025-Feb-08, Scientific reports
IF:3.8Q1
DOI:10.1038/s41598-025-85223-8
PMID:39922855
|
研究论文 | 本文提出了一种基于深度学习的垫片故障检测方法,采用卷积神经网络(CNN)来自动识别和评估散热器图像中的垫片错位或安装错误 | 开发了一种基于CNN架构的垫片检测系统,结合了特征提取和分类的深度学习算法,实现了垫片故障的自动化检测 | 未提及具体的数据集规模或实验环境限制 | 自动化检测垫片错位或安装错误,提升产品质量控制效率 | 散热器图像中的垫片 | 计算机视觉 | NA | 深度学习 | CNN | 图像 | 未提及具体样本数量 | NA | NA | NA | NA |
| 16847 | 2025-02-12 |
A deep learning-driven multi-layered steganographic approach for enhanced data security
2025-Feb-08, Scientific reports
IF:3.8Q1
DOI:10.1038/s41598-025-89189-5
PMID:39922893
|
研究论文 | 本文提出了一种基于深度学习的多层隐写框架,以增强数据安全性 | 结合Huffman编码、LSB嵌入和深度学习编码器-解码器,提高了隐写术的不可感知性、鲁棒性和安全性 | 未提及具体局限性 | 解决传统隐写方法在有效载荷容量、检测易感性和抗攻击鲁棒性方面的局限性 | 数字图像数据 | 计算机视觉 | NA | Huffman编码、LSB嵌入、深度学习编码器-解码器 | 深度学习编码器-解码器 | 图像 | 使用了Tiny ImageNet、COCO和CelebA等基准数据集 | NA | NA | NA | NA |
| 16848 | 2025-02-12 |
Applying genetic algorithm to extreme learning machine in prediction of tumbler index with principal component analysis for iron ore sintering
2025-Feb-08, Scientific reports
IF:3.8Q1
DOI:10.1038/s41598-025-88755-1
PMID:39922958
|
研究论文 | 本研究提出了一种结合遗传算法和极限学习机的集成模型,用于预测铁矿烧结过程中的转鼓指数 | 通过主成分分析降低数据维度,并结合遗传算法优化极限学习机,提高了模型的鲁棒性和泛化性能 | 模型仅在单一烧结厂的年度生产数据上进行了验证,可能缺乏广泛适用性 | 准确预测铁矿烧结过程中的转鼓指数,以优化烧结矿的质量 | 铁矿烧结过程中的转鼓指数 | 机器学习 | NA | 主成分分析(PCA),遗传算法(GA) | 极限学习机(ELM),遗传算法优化的极限学习机(GA-ELM) | 生产数据 | 一年内的实际生产数据 | NA | NA | NA | NA |
| 16849 | 2025-02-12 |
Molecular optimization using a conditional transformer for reaction-aware compound exploration with reinforcement learning
2025-Feb-08, Communications chemistry
IF:5.9Q1
DOI:10.1038/s42004-025-01437-x
PMID:39922979
|
研究论文 | 本文提出了一种名为TRACER的框架,用于结合分子属性优化与合成路径生成,以解决现有分子生成模型忽视有机合成可行性的问题 | TRACER框架通过条件transformer模型预测给定反应物在特定反应类型约束下的产物,有效生成了具有高活性的化合物 | NA | 设计具有理想属性的分子,以促进药物发现 | 分子生成与优化 | 机器学习 | NA | 条件transformer模型 | transformer | 分子结构数据 | NA | NA | NA | NA | NA |
| 16850 | 2024-08-07 |
Correction to: Deep Learning Glioma Grading with the Tumor Microenvironment Analysis Protocol for Comprehensive Learning, Discovering, and Quantifying Microenvironmental Features
2025-Feb, Journal of imaging informatics in medicine
DOI:10.1007/s10278-024-01160-4
PMID:38864948
|
NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
| 16851 | 2025-10-07 |
An intelligent fruit freshness monitoring system using hydrophobic indicator labels based on methylcellulose, k-carrageenan, and sodium tripolyphosphate, combined with deep learning
2025-Feb, International journal of biological macromolecules
IF:7.7Q1
DOI:10.1016/j.ijbiomac.2025.140001
PMID:39828157
|
研究论文 | 本研究开发了一种基于甲基纤维素、κ-卡拉胶和三聚磷酸钠的疏水性指示标签,结合深度学习技术实现水果新鲜度的智能监测 | 采用计算机模拟技术预测指示剂颜色变化,显著减少实验时间与成本;提出标签区域裁剪算法(ALC)结合轻量级CNN,有效降低背景干扰 | NA | 开发智能包装技术用于实时监测水果新鲜度 | 芒果、猕猴桃和葡萄三种水果 | 计算机视觉 | NA | pH响应型智能包装技术 | CNN | 图像 | 三种水果(芒果、猕猴桃、葡萄)的新鲜度实验 | NA | 轻量级卷积神经网络 | 准确率 | NA |
| 16852 | 2025-02-12 |
Wastewater quality prediction based on channel attention and TCN-BiGRU model
2025-Feb-01, Environmental monitoring and assessment
IF:2.9Q3
DOI:10.1007/s10661-025-13627-0
PMID:39891761
|
研究论文 | 本文提出了一种结合通道注意力机制、时间卷积网络(TCN)和双向门控循环单元(BiGRU)的新模型CA-TCN-BiGRU,用于预测关键水质指标 | 提出了结合通道注意力机制、TCN和BiGRU的CA-TCN-BiGRU模型,能够同时预测多个水质指标,并在数据预处理和通道注意力机制的影响下显著提升预测精度 | 研究仅基于惠州一家污水处理厂的数据进行训练和测试,模型的泛化能力需要进一步验证 | 提高水质预测的准确性,为水资源管理提供科学依据 | 污水处理厂的水质数据 | 机器学习 | NA | 深度学习 | CA-TCN-BiGRU | 时间序列数据 | 来自惠州一家污水处理厂的数据 | NA | NA | NA | NA |
| 16853 | 2025-02-12 |
Inverse design of nanophotonic devices enabled by optimization algorithms and deep learning: recent achievements and future prospects
2025-Feb, Nanophotonics (Berlin, Germany)
DOI:10.1515/nanoph-2024-0536
PMID:39927200
|
综述 | 本文综述了纳米光子器件逆向设计的最新进展,探讨了人工智能和优化方法在自动化设计过程中的应用 | 结合人工智能和优化算法,提出了一种新的纳米光子器件逆向设计方法,突破了传统直觉驱动的前向设计方法的局限性 | 当前逆向设计方法仍面临一些挑战,如计算复杂性、设计空间探索的局限性等 | 探索纳米光子器件的逆向设计方法,以推动下一代光子学的发展 | 纳米光子器件 | 机器学习 | NA | 优化算法、深度学习 | 判别模型、生成模型、强化学习 | NA | NA | NA | NA | NA | NA |
| 16854 | 2025-10-07 |
Optimizing papermaking wastewater treatment by predicting effluent quality with node-level capsule graph neural networks
2025-Jan-18, Environmental monitoring and assessment
IF:2.9Q3
DOI:10.1007/s10661-024-13581-3
PMID:39825037
|
研究论文 | 提出一种基于节点级胶囊图神经网络的造纸废水处理方法,用于预测出水水质指标 | 首次将节点级胶囊图神经网络与寄居蟹优化算法结合用于造纸废水处理预测,显著提升预测精度 | 未提及模型在其他类型工业废水处理中的泛化能力 | 优化造纸废水处理过程中的出水水质预测精度 | 造纸废水处理过程中的化学需氧量(COD)指标 | 机器学习 | NA | 废水处理过程监测 | 图神经网络,胶囊网络 | 工业过程数据 | NA | NA | 节点级胶囊图神经网络(NLCGNN) | 准确率,精确率,灵敏度 | NA |
| 16855 | 2025-02-12 |
The Future of Breast Cancer Diagnosis in Japan with AI and Ultrasonography
2025-Jan-15, JMA journal
IF:1.5Q2
DOI:10.31662/jmaj.2024-0183
PMID:39926065
|
综述 | 本文探讨了人工智能(AI)在日本乳腺癌诊断中的应用,特别是在超声成像中的关键进展 | 介绍了AI在乳腺超声诊断中的最新应用,包括由日本药品医疗器械管理局批准的AI辅助诊断程序 | AI在乳腺癌诊断中的应用仍面临患者接受度和环境影响等挑战,需要医生负责任地监督其使用 | 提高乳腺癌诊断的准确性和效率 | 乳腺癌患者 | 数字病理学 | 乳腺癌 | 超声成像 | 机器学习和深度学习 | 图像 | NA | NA | NA | NA | NA |
| 16856 | 2025-02-12 |
Use of AI in Diagnostic Imaging and Future Prospects
2025-Jan-15, JMA journal
IF:1.5Q2
DOI:10.31662/jmaj.2024-0169
PMID:39926072
|
研究论文 | 本文探讨了人工智能在医学影像诊断中的应用及其未来前景 | 利用AI构建三维模型进行手术模拟和导航,提高手术精度和护理质量 | 未提及具体的技术局限或数据限制 | 研究AI在医学影像诊断中的应用及其对医疗实践的改进 | 术前影像数据、电子病历、疾病进展和并发症预测 | 数字病理 | NA | 深度学习、自然语言处理 | NA | 影像数据、文本数据 | NA | NA | NA | NA | NA |
| 16857 | 2025-02-12 |
Clinical Prospects for Artificial Intelligence in Obstetrics and Gynecology
2025-Jan-15, JMA journal
IF:1.5Q2
DOI:10.31662/jmaj.2024-0197
PMID:39926075
|
综述 | 本文综述了人工智能在妇产科领域的最新研究进展,包括围产期、生殖和妇科癌症等方面的应用 | 总结了人工智能在妇产科多个子领域的最新应用,如胎儿异常诊断、辅助生殖技术效率提升及妇科癌症的诊断与预后预测 | 涉及个人信息的处理、缺乏相关法律法规以及透明度问题 | 探讨人工智能在妇产科领域的临床应用前景 | 围产期、生殖和妇科癌症 | 医疗人工智能 | 妇科疾病 | 深度学习 | NA | 医学影像(如超声波、MRI)、组织病理学数据 | NA | NA | NA | NA | NA |
| 16858 | 2025-02-12 |
Deep Learning Applications in 12-lead Electrocardiogram and Echocardiogram
2025-Jan-15, JMA journal
IF:1.5Q2
DOI:10.31662/jmaj.2024-0195
PMID:39926090
|
综述 | 本文综述了深度学习技术在12导联心电图和超声心动图中的应用及其在心血管医学领域的潜力 | 探讨了AI模型在心血管疾病筛查和机制研究中的创新应用,如通过单次心电图或超声心动图准确识别心肌病和先天性心脏病 | 未具体提及研究的局限性 | 更新AI在心电图和超声心动图中的应用成就,并展望AI在心血管护理和研究中的未来方向 | 心电图(ECG)和超声心动图数据 | 机器学习 | 心血管疾病 | 深度学习 | NA | 时间序列数据、图像数据 | NA | NA | NA | NA | NA |
| 16859 | 2025-02-12 |
Pathology Foundation Models
2025-Jan-15, JMA journal
IF:1.5Q2
DOI:10.31662/jmaj.2024-0206
PMID:39926091
|
研究论文 | 本文探讨了病理学中基础模型(FMs)的应用及其在医疗领域的潜力 | 介绍了大规模AI模型(基础模型)在病理学中的新兴应用,包括疾病诊断、患者生存预后预测等 | 基础模型在临床应用中的挑战仍需解决 | 探讨基础模型在病理学中的应用及其对精准和个性化医疗的促进作用 | 病理学中的基础模型及其在医疗领域的应用 | 数字病理学 | NA | 深度学习 | 基础模型(FMs) | 图像 | NA | NA | NA | NA | NA |
| 16860 | 2025-10-07 |
Assessing the efficiency of pixel-based and object-based image classification using deep learning in an agricultural Mediterranean plain
2025-Jan-10, Environmental monitoring and assessment
IF:2.9Q3
DOI:10.1007/s10661-024-13431-2
PMID:39792312
|
研究论文 | 本研究比较了基于像素和基于对象的深度学习方法在Sentinel-2卫星影像分类中的效率 | 首次将Deeplabv3深度学习方法与高通量滤波器增强技术结合,系统比较像素级和对象级分类在农业地中海平原的效能差异 | 仅使用Sentinel-2卫星数据,未验证其他卫星数据源的适用性;研究区域局限于地中海平原农业环境 | 评估深度学习框架下像素级与对象级图像分类方法在农业环境监测中的相对效率 | 地中海平原农业区域的Sentinel-2卫星影像 | 计算机视觉 | NA | 卫星遥感,高通量滤波 | 深度学习 | 卫星影像 | NA | NA | Deeplabv3 | 准确率,Kappa系数 | NA |