本数据库通过收集和整理最新科研文献信息而得,供了解领域前沿进展之用。数据源自 PubMed Data ,每日自动更新,已收录文献数量参见 统计表格。表格内容由 GPT 自动整理,可能存在错误或遗漏,请使用时务必注意核实!
如有建议或合作意向,欢迎联系 linlin.yan(AT)bioinfo.app 或 微信 yanlinlin82。本项目遵循 MIT 许可 发布,欢迎下载 源码 自行修改使用。如觉得不错,还请不吝 给我打赏,你的支持是我继续创新的重要动力!
除通过在线浏览外,为方便用户离线查阅,本站也提供 付费下载(定价10元)。之所以考虑收费,是因为批量扫描这些文献并整理也是有一定成本的,还请理解并多多支持。本站数据会持续更新,而仅需一次付费,未来就可以随时重新下载到最新版本数据。
序号 | 推送日期 | 文章 | 类型 | 简述 | 创新点 | 不足 | 研究目的 | 研究对象 | 领域 | 病种 | 技术 | 模型 | 数据类型 | 样本量 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
16861 | 2024-08-07 |
ASD-Net: a novel U-Net based asymmetric spatial-channel convolution network for precise kidney and kidney tumor image segmentation
2024-Jun, Medical & biological engineering & computing
IF:2.6Q3
DOI:10.1007/s11517-024-03025-y
PMID:38326677
|
研究论文 | 本文提出了一种基于U-Net的新型不对称空间-通道卷积网络ASD-Net,用于肾脏及肾脏肿瘤图像的精确分割 | ASD-Net采用了自适应空间-通道卷积优化(ASCO)块和密集扩张增强卷积(DDEC)块,以及Atrous空间金字塔池化(ASPP)模块和空间与通道挤压与激励(scSE)注意力机制,以提高分割精度 | NA | 提高肾脏及肾脏肿瘤图像分割的精确度 | 肾脏及肾脏肿瘤 | 计算机视觉 | NA | 深度学习 | U-Net | 图像 | KiTS19数据集 |
16862 | 2024-08-07 |
Deep learning and predictive modelling for generating normalised muscle function parameters from signal images of mandibular electromyography
2024-Jun, Medical & biological engineering & computing
IF:2.6Q3
DOI:10.1007/s11517-024-03047-6
PMID:38376739
|
研究论文 | 本文开发了一种从下颌肌电图信号图像中提取标准化信号参数的工作流程,并确定了量化信号强度和活动持续时间的最佳聚类方法 | 首次探索了开源下颌EMG信号转换方法,并利用深度学习技术从EMG图像中提取标准化信号数据 | 工作流程在某些肌肉活动中的聚类效果有待提高 | 开发一种能够从下颌肌电图信号图像中提取标准化信号数据的工作流程,并生成可量化的肌肉活动持续时间和功能强度参数 | 下颌肌电图信号图像 | 机器学习 | NA | OpenCV, 变分编码器, Neurokit2 | k-means, GMM, DBSCAN | 图像 | 66名参与者的颞肌、咬肌和二腹肌数据 |
16863 | 2024-08-07 |
DFUSNN: zero-shot dual-domain fusion unsupervised neural network for parallel MRI reconstruction
2024-May-10, Physics in medicine and biology
IF:3.3Q1
DOI:10.1088/1361-6560/ad3dbc
PMID:38604186
|
研究论文 | 本文介绍了一种名为DFUSNN的零样本双域融合无监督神经网络,用于并行MRI重建,无需外部训练数据集 | 提出了零样本双域融合无监督神经网络DFUSNN,结合Noise2Noise网络和贝叶斯优化方法,提高了重建质量 | NA | 开发一种不依赖外部训练数据集的高质量MRI重建方法 | 并行MRI图像重建 | 机器学习 | NA | Noise2Noise网络,贝叶斯优化 | 神经网络 | k-space数据 | 三个不同欠采样模式的模拟数据集 |
16864 | 2024-08-07 |
Enhancing ECG signal classification through pre-trained stacked-CNN embeddings: a transfer learning approach
2024-May-09, Biomedical physics & engineering express
IF:1.3Q3
DOI:10.1088/2057-1976/ad40b0
PMID:38640904
|
研究论文 | 本研究通过预训练的堆叠卷积神经网络(SCNN)嵌入和迁移学习方法,优化了心电图(ECG)信号分类 | 引入了一种结合迁移学习和传统机器学习的创新计算框架,利用多样化的数据集训练的SCNN生成高维特征嵌入,显著提高了分类器的区分能力 | NA | 优化心电图信号分类,提高在高风险医疗环境中的准确性和效率 | 心电图信号分类 | 机器学习 | NA | 迁移学习 | 堆叠卷积神经网络(SCNN) | 心电图信号 | 使用了CinC2017和CPSC2018数据集 |
16865 | 2024-08-07 |
Use of Artificial Intelligence With Deep Learning Approaches for the Follow-up of Infrarenal Endovascular Aortic Repair
2024-May-09, Journal of endovascular therapy : an official journal of the International Society of Endovascular Specialists
IF:1.7Q2
DOI:10.1177/15266028241252097
PMID:38721876
|
研究论文 | 本研究评估了一种基于人工智能的软件PRAEVAorta在评估EVAR术后随访期间形态学变化、检测内漏以及与EVAR相关不良事件关联的能力。 | PRAEVAorta软件能够提供更精确和快速的评估,通过自动检测内漏和全面的解剖评估,提高了诊断准确性和患者管理效率。 | NA | 评估基于人工智能的软件在EVAR术后随访中的应用效果。 | EVAR术后患者的形态学变化、内漏检测及与EVAR相关不良事件的关联。 | 数字病理 | 心血管疾病 | AI-based imaging analysis | NA | 影像 | 56名患者 |
16866 | 2024-08-07 |
Assessment of changes in vessel area during needle manipulation in microvascular anastomosis using a deep learning-based semantic segmentation algorithm: A pilot study
2024-May-09, Neurosurgical review
IF:2.5Q1
DOI:10.1007/s10143-024-02437-6
PMID:38722409
|
研究论文 | 本研究开发了一种基于深度学习的语义分割算法,用于评估微血管吻合术中针操作导致的血管面积变化,以客观评估外科手术技能。 | 首次使用手术视频评估手术对象的面积变化,并提出了一种新的方法来评估显微外科手术表现。 | NA | 开发一种新的方法来客观评估微血管吻合术中的外科手术技能。 | 微血管吻合术中血管面积的变化及外科医生的手术技能。 | 计算机视觉 | NA | 深度学习 | ResNet-50 | 视频 | 使用人工血管的微血管端侧吻合训练视频 |
16867 | 2024-08-07 |
Supervise-Assisted Self-Supervised Deep-Learning Method for Hyperspectral Image Restoration
2024-May-09, IEEE transactions on neural networks and learning systems
IF:10.2Q1
DOI:10.1109/TNNLS.2024.3386809
PMID:38722728
|
研究论文 | 本文提出了一种监督辅助的自监督深度学习方法,用于恢复噪声退化的超光谱图像 | 引入了噪声自适应损失函数,结合Stein's unbiased risk estimator (SURE)和total variation (TV)正则化器,以适应噪声环境下的图像恢复 | NA | 解决超光谱图像恢复中训练数据与目标数据之间的分布差异问题,以及噪声对图像退化的影响 | 超光谱图像的恢复 | 计算机视觉 | NA | 深度学习 | CNN | 图像 | 大量训练数据集 |
16868 | 2024-08-07 |
A comparative study of an on premise AutoML solution for medical image classification
2024-05-07, Scientific reports
IF:3.8Q1
DOI:10.1038/s41598-024-60429-4
PMID:38714764
|
研究论文 | 本文比较了基于本地的AutoML解决方案AutoKeras在医学图像分类中的表现 | 探索了常见参数选择(如试验次数和输入图像分辨率)对AutoML在医学图像分类中性能的影响 | AutoKeras虽然性能优越,但训练时间较长 | 评估AutoKeras在医学图像分类中的有效性及其参数选择的影响 | 五个公共医学数据集,涵盖多种成像模式 | 计算机视觉 | NA | AutoML | 深度学习架构 | 图像 | 五个公共医学数据集 |
16869 | 2024-08-07 |
Precise and automated lung cancer cell classification using deep neural network with multiscale features and model distillation
2024-05-07, Scientific reports
IF:3.8Q1
DOI:10.1038/s41598-024-61101-7
PMID:38714840
|
研究论文 | 本研究开发了一种基于深度学习的模型,利用特征金字塔网络(FPN)和挤压激励(SE)模块结合残差网络(ResNet18)进行肺癌细胞的精确和自动化分类 | 本研究采用了多尺度特征和模型蒸馏技术,通过从大型教师模型中提取知识到更紧凑的学生模型,进一步提升了模型性能 | NA | 提高肺癌细胞分类的精确度和稳定性 | 肺癌细胞的分类,特别是腺癌、鳞状细胞癌和小细胞肺癌的鉴别诊断 | 机器学习 | 肺癌 | 深度学习 | CNN | 图像 | NA |
16870 | 2024-08-07 |
Hemodynamic factors of spontaneous vertebral artery dissecting aneurysms assessed with numerical and deep learning algorithms: Role of blood pressure and asymmetry
2024-May, Neuro-Chirurgie
DOI:10.1016/j.neuchi.2023.101519
PMID:38280371
|
研究论文 | 本文使用计算流体动力学(CFD)和深度学习算法研究自发椎动脉夹层动脉瘤(SVADA)的血液动力学因素 | 本文开发了软件,能够利用患者影像重建椎基底动脉系统,并训练神经常微分方程(NODE)学习并复制从CFD模拟中获得的动态流线 | NA | 研究自发椎动脉夹层动脉瘤形成的血液动力学因素 | 自发椎动脉夹层动脉瘤的血液动力学因素 | 计算机视觉 | NA | 计算流体动力学(CFD) | 神经常微分方程(NODE) | 影像 | 三名患者 |
16871 | 2024-08-07 |
One-stop detection of anterior cruciate ligament injuries on magnetic resonance imaging using deep learning with multicenter validation
2024-May-01, Quantitative imaging in medicine and surgery
IF:2.9Q2
DOI:10.21037/qims-23-1539
PMID:38720839
|
研究论文 | 本研究开发了一种深度学习模型,利用膝关节磁共振成像(MRI)进行前交叉韧带(ACL)损伤的综合自动化检测,并在多中心数据集上进行了验证 | 首次采用深度学习技术,结合特定的YOLOv5m和ResNet-18 CNN架构,实现了对ACL损伤的自动化检测,提高了诊断的准确性和效率 | 研究主要基于回顾性数据,且模型在不同数据集上的表现存在差异,需要进一步的前瞻性研究和更大规模的数据验证 | 开发一种基于MRI的深度学习模型,用于自动化检测前交叉韧带损伤,以提高诊断的客观性和效率 | 前交叉韧带损伤的检测 | 机器学习 | 运动损伤 | 深度学习 | YOLOv5m, ResNet-18 CNN | MRI图像 | 1589个膝关节样本,包括1443个完整、90个部分撕裂和56个完全撕裂 |
16872 | 2024-08-07 |
Deep learning image reconstruction of diffusion-weighted imaging in evaluation of prostate cancer focusing on its clinical implications
2024-May-01, Quantitative imaging in medicine and surgery
IF:2.9Q2
DOI:10.21037/qims-23-1379
PMID:38720859
|
研究论文 | 本研究旨在探讨深度学习重建(DLR)技术在扩散加权成像(DWI)中对前列腺癌(PCa)图像质量的提升及其对临床评估的影响 | 本研究首次评估了DLR技术在DWI中对前列腺癌图像质量的提升效果,并分析了其对PI-RADS评分的影响 | 研究为回顾性研究,样本量有限,且仅在一家医院进行 | 评估DLR技术在DWI中对前列腺癌图像质量的提升及其对PI-RADS评分的影响 | 前列腺癌患者的扩散加权成像(DWI)图像 | 数字病理学 | 前列腺癌 | 深度学习重建(DLR) | NA | 图像 | 70名前列腺癌患者 |
16873 | 2024-08-07 |
Semi-supervised learning in diagnosis of infant hip dysplasia towards multisource ultrasound images
2024-May-01, Quantitative imaging in medicine and surgery
IF:2.9Q2
DOI:10.21037/qims-23-1384
PMID:38720865
|
研究论文 | 本文提出了一种基于特征金字塔网络和对比学习方案的半监督学习方法,用于诊断婴儿髋关节发育不良,通过多源超声图像进行识别 | 该方法利用大量未标记的超声图像和少量标记的解剖结构数据,通过对比学习提高了地标识别和标准平面识别的准确性 | NA | 开发一种能够利用多源超声图像进行婴儿髋关节发育不良自动诊断的半监督学习方法 | 493名婴儿的髋关节超声图像 | 计算机视觉 | 儿科疾病 | 半监督学习 | 特征金字塔网络 (FPN), Siamese架构 | 图像 | 493名婴儿的超声图像 |
16874 | 2024-08-07 |
Ultrasound deep learning radiomics and clinical machine learning models to predict low nuclear grade, ER, PR, and HER2 receptor status in pure ductal carcinoma in situ
2024-Apr-29, Gland surgery
IF:1.5Q3
DOI:10.21037/gs-23-417
PMID:38720675
|
研究论文 | 本研究利用超声深度学习放射组学和临床机器学习模型预测纯导管原位癌中的低核级、ER、PR和HER2受体状态 | 本研究首次结合深度学习放射组学和临床机器学习模型,利用超声数据预测纯导管原位癌的分子标记物状态 | 研究样本量较小,且仅基于超声数据进行分析 | 开发模型以预测纯导管原位癌的分子标记物状态,从而实现个性化治疗 | 纯导管原位癌患者的超声数据和临床特征 | 机器学习 | 乳腺癌 | 深度学习放射组学 | CNN | 图像 | 349名纯导管原位癌患者 |
16875 | 2024-08-07 |
Clinical validation of a deep-learning-based bone age software in healthy Korean children
2024-Apr, Annals of pediatric endocrinology & metabolism
IF:2.8Q1
DOI:10.6065/apem.2346050.025
PMID:38271993
|
研究论文 | 评估基于深度学习的骨龄软件在健康韩国儿童中估计实际年龄的临床性能 | 使用基于深度学习的骨龄软件进行骨龄评估 | 软件显示出较低的一致性率,并且在8.3岁以下的儿童中倾向于低估骨龄 | 评估基于深度学习的骨龄软件在健康韩国儿童中的临床性能 | 371名年龄在4至17岁之间的健康韩国儿童 | 机器学习 | NA | 深度学习 | NA | 图像 | 371名健康儿童,553张左手X光片 |
16876 | 2024-08-07 |
Neural network in food analytics
2024, Critical reviews in food science and nutrition
IF:7.3Q1
DOI:10.1080/10408398.2022.2139217
PMID:36322538
|
综述 | 本文综述了神经网络(即深度学习,NN)在食品分析领域的应用,重点关注其在食品识别、供应链安全和组学分析等方面的应用 | 神经网络在食品领域的应用显示出其在食品识别、感官评估和光谱及色谱模式识别等方面的优势 | 神经网络在食品科学领域的扩展面临挑战,包括缺乏友好的界面软件包、模型行为难以理解、多源异构数据等问题 | 旨在全面概述神经网络在食品分析中的应用,并讨论其面临的挑战和潜在问题 | 食品分析领域的神经网络应用 | 机器学习 | NA | 神经网络(NN) | 神经网络(NN) | 多源异构数据 | NA |
16877 | 2024-08-07 |
EMPT: a sparsity Transformer for EEG-based motor imagery recognition
2024, Frontiers in neuroscience
IF:3.2Q2
DOI:10.3389/fnins.2024.1366294
PMID:38721049
|
研究论文 | 本文提出了一种结合混合专家层和概率稀疏自注意力机制的Transformer神经网络,用于解码脊髓损伤患者运动想象(MI)EEG的时间-频率-空间域特征 | 引入了混合专家层和Kullback-Leibler散度注意力池化机制,通过稀疏化Transformer神经网络,提高了其在EEG数据集上的适用性 | NA | 开发一种新的深度学习方法,用于基于运动想象的EEG数据解码 | 脊髓损伤患者的运动想象EEG信号 | 机器学习 | 脊髓损伤 | Transformer神经网络 | Transformer | EEG信号 | 脊髓损伤患者的MI EEG数据集 |
16878 | 2024-08-07 |
Deep-Learning-Based Hepatic Ploidy Quantification Using H&E Histopathology Images
2023-04-16, Genes
IF:2.8Q2
DOI:10.3390/genes14040921
PMID:37107679
|
研究论文 | 开发了一种基于深度学习的算法,用于使用常规临床实践中常见的H&E组织病理学图像量化肝细胞的倍性 | 首次成功尝试在H&E图像上自动化倍性分析 | NA | 提高临床样本中肝细胞倍性量化的可及性 | 肝细胞的倍性 | 数字病理学 | NA | 深度学习 | 深度学习模型 | 图像 | NA |
16879 | 2024-08-07 |
Patch individual filter layers in CNNs to harness the spatial homogeneity of neuroimaging data
2021-12-27, Scientific reports
IF:3.8Q1
DOI:10.1038/s41598-021-03785-9
PMID:34961762
|
研究论文 | 本文提出了一种新的卷积神经网络(CNN)架构,通过引入补丁个体滤波器(PIF)层来利用神经影像数据的 spatial homogeneity | 首次在CNN中引入先验的归纳偏置,以利用神经影像数据的 spatial homogeneity | NA | 探索如何通过新的CNN架构提高神经影像数据处理的效率和准确性 | 神经影像数据的性别分类、阿尔茨海默病检测和多发性硬化症检测 | 机器学习 | NA | 卷积神经网络(CNN) | CNN | 图像 | 使用了UK Biobank数据、ADNI数据和私人医院数据进行评估 |
16880 | 2024-08-07 |
Alteration of the corpus callosum in patients with Alzheimer's disease: Deep learning-based assessment
2021, PloS one
IF:2.9Q1
DOI:10.1371/journal.pone.0259051
PMID:34941878
|
研究论文 | 本研究利用深度学习技术评估阿尔茨海默病患者胼胝体的变化 | 使用基于U-net架构的卷积神经网络进行胼胝体的精确分割和分析 | NA | 研究阿尔茨海默病患者胼胝体的变化及其与认知功能的关系 | 阿尔茨海默病患者的胼胝体 | 计算机视觉 | 阿尔茨海默病 | 深度学习技术 | 卷积神经网络 | MRI图像 | 94名正常对照组,56名轻度痴呆组,17名中度痴呆组 |