深度学习在生物医药领域中的应用

本数据库通过收集和整理最新科研文献信息而得,供了解领域前沿进展之用。数据源自 PubMed Data ,每日自动更新,已收录文献数量参见 统计表格。表格内容由 GPT 自动整理,可能存在错误或遗漏,请使用时务必注意核实!

如有建议或合作意向,欢迎联系 linlin.yan(AT)bioinfo.app 或 微信 yanlinlin82。本项目遵循 MIT 许可 发布,欢迎下载 源码 自行修改使用。如觉得不错,还请不吝 给我打赏,你的支持是我继续创新的重要动力!

Sample Image
添加微信请说明来意
Sample Image
微信赞赏

除通过在线浏览外,为方便用户离线查阅,本站也提供 付费下载(定价10元)。之所以考虑收费,是因为批量扫描这些文献并整理也是有一定成本的,还请理解并多多支持。本站数据会持续更新,而仅需一次付费,未来就可以随时重新下载到最新版本数据。

当前筛选条件: [分区不过滤] [IF不过滤] [发表日期不过滤] [清除筛选条件]
当前共找到 16991 篇文献,本页显示第 16881 - 16900 篇。
序号 推送日期 文章 类型 简述 创新点 不足 研究目的 研究对象 领域 病种 技术 模型 数据类型 样本量
16881 2024-08-07
Deep Learning-Based Automated Classification of Multi-Categorical Abnormalities From Optical Coherence Tomography Images
2018-Nov, Translational vision science & technology IF:2.6Q2
研究论文 本文开发了一种基于深度学习的智能系统,用于自动分类光学相干断层扫描(OCT)图像中的多类别异常 该系统能够自动检测并区分各种OCT图像,准确度极高,性能与人类专家相当或更优 NA 开发一种新的基于深度学习的智能系统,用于自动分类OCT图像 60,407张OCT图像,由17位持牌视网膜专家标记,其中25,134张图像被纳入研究 计算机视觉 NA 深度学习 ResNet 图像 25,134张OCT图像
16882 2024-08-07
Combining deep learning and droplet microfluidics for rapid and label-free antimicrobial susceptibility testing of colistin
2024-Aug-01, Biosensors & bioelectronics IF:10.7Q1
研究论文 本文开发了一种基于微流控技术的快速、简便且微型化的粘菌素耐药性检测方法,结合深度学习技术进行细菌生长检测 该方法使用微流控平台将细菌封装在纳升液滴中,通过直接明场成像进行快速自动的细菌生长检测,比基于荧光的分析更快更准确 NA 开发一种快速、简便且微型化的抗生素耐药性检测方法,特别是针对粘菌素 粘菌素的耐药性检测 微流控技术 NA 微流控技术 深度学习 图像 21种快速生长的肠杆菌科细菌(大肠杆菌和肺炎克雷伯菌),包括具有不同耐药机制的临床分离株
16883 2024-08-07
A deep learning-based approach for fully automated segmentation and quantitative analysis of muscle fibers in pig skeletal muscle
2024-Jul, Meat science IF:5.7Q1
研究论文 本文提出了一种基于深度学习的全自动方法,用于猪骨骼肌纤维的分割和定量分析 本研究采用SOLOv2深度学习架构,有效处理了复杂图像数据集中的肌肉纤维分割问题 现有方法在处理具有显著形态变化的图像数据集时缺乏验证 旨在开发一种准确且自动化的分析方法,用于肌肉纤维的分割和定量分析 猪骨骼肌纤维 计算机视觉 NA 深度学习 SOLOv2 图像 实际图像数据集
16884 2024-08-07
A practical guide to the implementation of artificial intelligence in orthopaedic research-Part 2: A technical introduction
2024-Jul, Journal of experimental orthopaedics IF:2.0Q2
研究论文 本文为骨科研究中人工智能实施的实用指南第二部分,介绍了人工智能技术的基本原理和应用 探讨了神经网络和深度学习架构在复杂医疗数据分析中的应用,以及自然语言处理在医疗文本分类和临床决策支持中的潜力 NA 为骨科研究人员提供参与人工智能驱动研究所需的基本技术知识 骨科研究中的人工智能技术 机器学习 NA 机器学习, 神经网络, 深度学习, 自然语言处理 CNN, LSTM, GAN 文本, 图像 NA
16885 2024-08-07
MAN-C: A masked autoencoder neural cryptography based encryption scheme for CT scan images
2024-Jun, MethodsX IF:1.6Q2
研究论文 本文提出了一种基于掩码自编码器神经密码学的加密方案MAN-C,用于安全共享医学图像 结合了掩码自编码器和神经密码学,提供了一种新的公钥密码学方法,具有更少的计算时间和内存需求,以及非确定性特性 NA 开发一种新的加密技术,以安全地共享医学图像,保护患者数据隐私 医学图像,特别是CT扫描图像 计算机视觉 NA 掩码自编码器 自编码器 图像 使用了由癌症影像档案(TCIA)公开的CT扫描数据集
16886 2024-08-07
DunHuangStitch: Unsupervised Deep Image Stitching of Dunhuang Murals
2024-May-08, IEEE transactions on visualization and computer graphics IF:4.7Q1
研究论文 本文提出了一种基于深度学习的无监督敦煌壁画图像拼接方法,通过构建两个壁画拼接数据集和设计渐进回归图像对齐网络与特征差分重建软编码缝合网络,实现了先进的壁画拼接性能。 本文首次采用深度学习方法进行敦煌壁画的无监督拼接,并设计了新的网络结构和软编码缝合质量评估方法。 NA 旨在实现敦煌壁画的数字化存储和保护。 敦煌壁画图像的拼接。 计算机视觉 NA 深度学习 CNN 图像 两个壁画拼接数据集
16887 2024-08-07
Accurate structure prediction of biomolecular interactions with AlphaFold 3
2024-May-08, Nature IF:50.5Q1
研究论文 本文介绍了AlphaFold 3模型,该模型采用更新后的基于扩散的架构,能够联合预测包括蛋白质、核酸、小分子、离子和修饰残基在内的复合物结构 AlphaFold 3模型在蛋白质-配体相互作用、蛋白质-核酸相互作用以及抗体-抗原预测方面均显著优于现有工具 NA 旨在提高生物分子相互作用结构预测的准确性 蛋白质、核酸、小分子、离子和修饰残基的复合物结构 机器学习 NA 深度学习 AlphaFold 3 结构数据 NA
16888 2024-08-07
Artificial intelligence-based assessment of built environment from Google Street View and coronary artery disease prevalence
2024-May-07, European heart journal IF:37.6Q1
研究论文 本研究利用机器视觉技术从Google Street View(GSV)图像中提取建筑环境特征,并探讨其与美国城市冠状动脉疾病(CHD)患病率的关系 本研究首次使用深度学习技术从GSV图像中提取建筑环境特征,并将其与CHD患病率进行关联分析 本研究为横断面研究,未来需要纵向研究来验证结果的长期有效性 探讨机器视觉技术在评估建筑环境与心血管疾病患病率关系中的应用 建筑环境特征与冠状动脉疾病患病率的关系 机器学习 心血管疾病 卷积神经网络 CNN 图像 0.53百万张GSV图像覆盖789个美国城市的普查区域
16889 2024-08-07
Deep learning-based whole-body PSMA PET/CT attenuation correction utilizing Pix-2-Pix GAN
2024-May-07, Oncotarget
研究论文 本文提出了一种基于深度学习的人工智能工具,利用Pix-2-Pix GAN生成非衰减校正PET图像的衰减校正PET图像,以减少低剂量CT扫描的需求 使用Pix-2-Pix GAN模型生成衰减校正PET图像,显示出与原始图像高度相关的SUV指标 NA 开发一种人工智能工具,用于减少肿瘤患者治疗随访期间进行的PET/CT研究的辐射剂量 前列腺癌患者的18F-DCFPyL PSMA PET-CT研究 机器学习 前列腺癌 Pix-2-Pix GAN GAN 图像 302名前列腺癌患者的PET-CT研究,分为训练、验证和测试组(分别为183、60、59例)
16890 2024-08-07
Automated detection of steno-occlusive lesion on time-of-flight magnetic resonance angiography: an observer performance study
2024-May-07, AJNR. American journal of neuroradiology
研究论文 本研究旨在验证一种人工智能模型在检测颅内动脉狭窄闭塞性病变中的临床效用 本研究首次评估了人工智能方法在检测颅内动脉病理病变中的临床益处,特别是在提高检测准确性和减少阅读时间方面 尽管人工智能模型提高了检测准确性,但使用该模型后阅读时间有所增加 验证人工智能模型在检测颅内动脉狭窄闭塞性病变中的临床效用 颅内动脉狭窄闭塞性病变 计算机视觉 脑血管疾病 NA 人工智能模型 图像 138张TOF-MRA图像
16891 2024-08-07
Deep learning sheds new light on non-orthogonal optical multiplexing
2024-May-06, Light, science & applications
研究论文 提出了一种用于非正交输入通道编码的深度神经网络,通过多模光纤恢复散斑图像 该方法为通过散射介质的非正交光学复用提供了新的视角 NA 探索通过散射介质的非正交光学复用的新方法 非正交输入通道编码及散斑图像恢复 机器学习 NA 深度学习 深度神经网络 图像 NA
16892 2024-08-07
A comprehensive laser image dataset for real-time measurement of wheelset geometric parameters
2024-May-06, Scientific data IF:5.8Q1
研究论文 本文构建了一个公开的轮对激光图像数据集(WLI-Set),用于实时测量轮对几何参数 首次构建了一个包含丰富标注的多线激光条纹图像的公开轮对数据集,有助于推动轮对研究 NA 开发一个高质量的轮对图像数据集,以支持深度学习模型在轮对几何参数测量中的应用 轮对图像及其几何参数 计算机视觉 NA 深度学习 NA 图像 包含四个子数据集(原始、修复、分割和中心线)的轮对激光图像数据集
16893 2024-08-07
Enhancing tuberculosis vaccine development: a deconvolution neural network approach for multi-epitope prediction
2024-05-06, Scientific reports IF:3.8Q1
研究论文 本文首次采用基于解卷积神经网络(DCNN)和双向长短期记忆网络(DCNN-BiLSTM)的深度学习框架,用于预测针对六种Mtb H37Rv蛋白的Mtb多表位疫苗(MtbMEV)亚单位,以增强结核病疫苗的开发。 首次应用深度学习框架DCNN-BiLSTM于结核病多表位疫苗预测,模型准确率达到99.5%,优于其他机器学习模型。 研究结果需通过进一步的实验验证,以建立未来临床试验的候选疫苗。 开发针对结核病的高效疫苗。 针对六种Mtb H37Rv蛋白的Mtb多表位疫苗亚单位。 机器学习 结核病 解卷积神经网络(DCNN)和双向长短期记忆网络(DCNN-BiLSTM) DCNN-BiLSTM 蛋白质数据 六种Mtb H37Rv蛋白
16894 2024-08-07
Smart traffic management of vehicles using faster R-CNN based deep learning method
2024-May-06, Scientific reports IF:3.8Q1
研究论文 本文研究了一种基于Faster R-CNN深度学习方法的智能车辆交通管理技术 提出了一种四步法解决车辆分割问题,包括自适应背景模型最小化、Faster R-CNN子网操作、初始细化及扩展拓扑主动网结果优化 未明确提及 解决智能车辆交通管理中的车辆分割问题 车辆分割、交通密度估计和车辆追踪 计算机视觉 NA Faster R-CNN CNN 视频 未明确提及
16895 2024-08-07
Detecting emotions through EEG signals based on modified convolutional fuzzy neural network
2024-05-06, Scientific reports IF:3.8Q1
研究论文 本研究通过改进的卷积模糊神经网络基于脑电信号进行情绪识别 本研究改进了卷积模糊神经网络(CFNN)的架构,以提高情绪识别的准确性和可靠性 NA 提高基于脑电信号的情绪识别系统的准确性和可靠性 脑电信号的情绪识别 机器学习 NA 脑电图(EEG) 卷积模糊神经网络(CFNN) 脑电信号 未具体说明样本数量
16896 2024-08-07
Toward robust and high-throughput detection of seed defects in X-ray images via deep learning
2024-May-06, Plant methods IF:4.7Q1
研究论文 本文提出了一种基于深度学习的2D X射线图像种子缺陷检测方法,通过X-Robustifier管道实现快速且鲁棒的检测。 引入了特定的数据增强技术以补偿缺陷比例低的问题,并提高了对X射线成像系统物理参数变化的鲁棒性。 NA 优化种子批次的品质,通过非破坏性成像技术检测种子内部缺陷。 种子中的缺陷检测。 计算机视觉 NA X射线成像 物体检测神经网络 图像 缺陷和无缺陷的种子2D X射线图像
16897 2024-08-07
Glaucoma detection using non-perfused areas in OCTA
2024-05-05, Scientific reports IF:3.8Q1
研究论文 本文提出了一种基于光学相干断层扫描血管成像(OCTA)中非灌注区域的概率密度函数特征,用于区分青光眼患者和健康对照的新方法 该方法通过计算灌注距离区域的特征,减少了血管分割错误的影响,并且在不同毛细血管丛上的表现优于使用手工特征的先前方法 该方法依赖于血管分割的准确性,尽管灌注距离测量对分割错误较不敏感,但仍可能受其影响 旨在开发一种更敏感且计算效率高的方法,用于通过OCTA图像检测青光眼 青光眼患者和健康对照者的OCTA图像中的非灌注区域 数字病理学 青光眼 光学相干断层扫描血管成像(OCTA) NA 图像 未具体说明样本数量
16898 2024-08-07
Image factory: A method for synthesizing novel CT images with anatomical guidance
2024-May, Medical physics IF:3.2Q1
研究论文 本文提出了一种基于解剖指导合成新型CT图像的方法 该方法能够利用小规模标注数据集和大规模非标注数据集,通过一系列步骤生成大规模标注数据集,用于医学应用中的深度学习网络训练 NA 解决医学应用中深度学习因缺乏大量标注、注释或分割训练数据集而受限的问题 肺部CT图像 计算机视觉 NA StyleGAN, U-Net, CycleGAN/Pixel-to-Pixel (P2P) GAN 图像 30名患者的标注肺部CT数据集和14000名患者的非标注高分辨率CT数据集
16899 2024-08-07
Hybrid-supervised deep learning for domain transfer 3D protoacoustic image reconstruction
2024-Apr-03, Physics in medicine and biology IF:3.3Q1
研究论文 本研究开发了一种混合监督深度学习方法,用于解决质子声学成像中有限视角问题,并实现了3D质子剂量验证的高效重建 提出了一种两阶段的深度学习方法Recon-Enhance,其中Recon阶段使用基于transformer的网络从原始声学信号重建初始压力图,Enhance阶段使用3D U-net进一步增强图像质量 NA 解决质子声学成像中有限视角问题,提高3D质子剂量验证的准确性和效率 质子声学成像中的3D剂量验证 机器学习 前列腺癌 深度学习 transformer, 3D U-net 图像 126名前列腺癌患者的数据集
16900 2024-08-07
A deep learning based holistic diagnosis system for immunohistochemistry interpretation and molecular subtyping
2024-04, Neoplasia (New York, N.Y.)
研究论文 开发了一种基于深度学习的整体智能乳腺癌肿瘤诊断系统,用于免疫组化图像的自动解读和分子亚型分类 该系统通过卷积神经网络自动提取和分析免疫染色多特征,提高了免疫组化图像解读的效率和准确性 NA 提高乳腺癌免疫组化图像解读的效率和准确性 乳腺癌的分子亚型分类 机器学习 乳腺癌 卷积神经网络 CNN 图像 NA
回到顶部