本数据库通过收集和整理最新科研文献信息而得,供了解领域前沿进展之用。数据源自 PubMed Data ,每日自动更新(使用关键词“['deep learning']”过滤),已收录文献数量参见 统计表格。表格内容由 GPT 自动整理,可能存在错误或遗漏,请使用时务必注意核实!
如有建议或合作意向,欢迎联系 linlin.yan(AT)bioinfo.app 或 微信 yanlinlin82。本项目遵循 MIT 许可 发布,欢迎下载 源码 自行修改使用。如觉得不错,还请不吝 给我打赏,你的支持是我继续创新的重要动力!


除通过在线浏览外,为方便用户离线查阅,本站也提供 付费下载(定价19.9元)。之所以考虑收费,是因为批量扫描这些文献并整理也是有一定成本的,还请理解并多多支持。本站数据会持续更新,而仅需一次付费,未来就可以随时重新下载到最新版本数据。
| 序号 | 推送日期 | 文章 | 类型 | 简述 | 创新点 | 不足 | 研究目的 | 研究对象 | 领域 | 病种 | 技术 | 模型 | 数据类型 | 样本量 | 算法框架 | 模型架构 | 性能指标 | 计算资源 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 1701 | 2025-12-05 |
Predicting Tumor Cell Response to Synergistic Drug Combinations Using a Novel Simplified Deep Learning Model
2020, AMIA ... Annual Symposium proceedings. AMIA Symposium
PMID:33936513
|
研究论文 | 本研究提出了一种新的简化深度学习模型,用于预测肿瘤细胞对协同药物组合的反应 | 与现有模型使用大量化学结构和基因组学特征不同,该模型基于一小套癌症信号通路构建,能更生物意义明确且可解释地模拟多组学数据和药物靶点/机制的整合 | 模型依赖于NCI ALMANAC药物组合筛选数据,可能受数据集的局限性和信号通路选择的限制 | 开发计算模型以预测药物组合的协同效应,促进新型药物组合的发现 | 肿瘤细胞对药物组合的反应 | 机器学习 | 癌症 | 深度学习 | 深度学习模型 | 信号通路数据、药物组合筛选数据 | NA | NA | 简化深度学习模型 | NA | NA |
| 1702 | 2025-12-05 |
Normalizing Clinical Document Titles to LOINC Document Ontology: an Initial Study
2020, AMIA ... Annual Symposium proceedings. AMIA Symposium
PMID:33936520
|
研究论文 | 本研究探讨了将临床文档标题标准化为LOINC文档本体(DO)的可行性,通过跨五个机构的临床笔记标题映射到DO的五个轴,并利用BERT模型实现自动映射 | 首次将BERT模型应用于临床文档标题到LOINC DO轴的自动映射,并分析了DO轴定义中的歧义问题 | 研究仅基于4,000个手动标注的标题,样本规模有限,且未涉及更广泛的临床文档类型或机构 | 调查LOINC DO在临床文档标准化中的可行性和泛化能力 | 来自五个机构的临床笔记标题 | 自然语言处理 | NA | NA | BERT | 文本 | 4,000个手动标注的临床文档标题 | NA | BERT | NA | NA |
| 1703 | 2025-12-04 |
Dengue forecasting and outbreak detection in Brazil using LSTM: integrating human mobility and climate factors
2026-Mar, Infectious Disease Modelling
IF:3.0Q1
DOI:10.1016/j.idm.2025.11.002
PMID:41321683
|
研究论文 | 本研究开发了一种基于LSTM的深度学习模型,用于预测巴西的登革热病例并检测疫情爆发,整合了人类移动性和气候因素 | 首次将人类移动性数据整合到基于深度学习的登革热预测框架中,以捕捉病毒传播的空间动态 | 未明确提及模型在更广泛地理区域或不同疾病背景下的泛化能力限制 | 提高登革热病例预测和疫情爆发的检测准确性,以支持早期预警系统和公共卫生干预 | 巴西选定城市的登革热病例数据、气候变量和人类移动性数据 | 自然语言处理 | 登革热 | 深度学习 | LSTM | 时间序列数据 | NA | NA | LSTM | MAE, MAPE, CRPS, 准确率, 灵敏度, 特异性, F1分数 | NA |
| 1704 | 2025-12-04 |
LUMIR: an LLM-driven unified agent framework for multi-task infrared spectroscopy reasoning
2026-Jan-08, Analytica chimica acta
IF:5.7Q1
DOI:10.1016/j.aca.2025.344857
PMID:41330688
|
研究论文 | 本文介绍了一个名为LUMIR的LLM驱动的统一智能体框架,用于在低数据条件下实现多任务红外光谱分析的自动化与增强 | 提出了首个将结构化文献知识库、自动化预处理、特征提取和预测建模集成到统一流程中的LLM驱动框架,通过挖掘同行评审文献中的已验证策略并结合小样本学习,实现了在资源有限条件下的鲁棒光谱分析 | 框架在更广泛的光谱类型和极端数据稀缺场景下的泛化能力仍需进一步验证,且依赖于文献知识库的质量和覆盖范围 | 开发一个数据高效、可自动化的统一框架,以解决红外光谱分析中工作流程构建复杂、泛化能力差的问题 | 红外光谱数据 | 机器学习 | NA | 红外光谱分析 | LLM | 光谱数据 | 多个数据集,包括公开的牛奶近红外数据集、中草药、不同储存时长的陈皮、工业废水COD数据集以及Tecator和Corn两个公共基准数据集 | NA | 基于智能体的统一框架(LUMIR) | 与已建立的机器学习和深度学习模型性能相当(具体指标未明确列出,但涉及分类、回归和异常检测任务) | NA |
| 1705 | 2025-12-04 |
AI-driven aging digital twins: A roadmap for clinical translation in precision geriatrics
2026-Jan, Ageing research reviews
IF:12.5Q1
DOI:10.1016/j.arr.2025.102931
PMID:41192800
|
综述 | 本文综述了AI驱动的衰老数字孪生在精准老年医学中的临床转化路线图,探讨了其潜力与挑战 | 提出了基于AI和多源异构数据整合的衰老数字孪生技术,用于实时健康监测、预测分析和个性化干预 | 训练数据集中存在年龄分层偏差,老年人群数据质量差异可能限制模型泛化性,数据隐私、算法透明度和临床验证问题尚未解决 | 探讨AI驱动的衰老数字孪生在精准老年医学中的临床转化潜力 | 衰老及相关疾病(如神经退行性疾病、心血管疾病和癌症) | 机器学习 | 老年疾病 | 深度学习 | NA | 多源异构数据 | NA | NA | NA | NA | NA |
| 1706 | 2025-12-04 |
Artificial intelligence for fall detection in older adults: A comprehensive survey of machine learning, deep learning approaches, and future directions
2026-Jan, Ageing research reviews
IF:12.5Q1
DOI:10.1016/j.arr.2025.102948
PMID:41265569
|
综述 | 本文全面综述了面向老年人的跌倒检测技术,重点关注机器学习与深度学习方法,并探讨了未来研究方向 | 整合了AI驱动系统的监管框架,跨工程、计算机科学和老年学等多个领域,并明确了跌倒检测与骨质疏松症、神经系统疾病等病症之间的联系 | NA | 综述老年人跌倒检测技术的最新进展,特别是应对数据稀缺的挑战,并推动稳健AI系统的临床转化与监管批准 | 老年人跌倒检测系统 | 机器学习和计算机视觉 | 老年疾病 | NA | NA | 传感器数据和视觉数据 | NA | NA | NA | NA | NA |
| 1707 | 2025-12-04 |
Magnetic resonance imaging analysis for Alzheimer's disease diagnosis using artificial intelligence: Methods, challenges, and opportunities
2026-Jan, Ageing research reviews
IF:12.5Q1
DOI:10.1016/j.arr.2025.102943
PMID:41265570
|
综述 | 本文综述了人工智能在利用磁共振成像诊断阿尔茨海默病领域的最新进展、挑战与机遇 | 系统性地总结了AI在MRI数据分析用于AD诊断中的最新方法、性能评估、临床应用潜力与局限性,并指明了未来研究方向 | 作为一篇综述文章,其局限性在于主要整合现有研究,而非提出新的原创方法或模型 | 为阿尔茨海默病的早期、准确诊断提供人工智能辅助的磁共振成像分析方法概述 | 用于阿尔茨海默病诊断的磁共振成像数据及基于此的人工智能模型 | 医学影像分析 | 阿尔茨海默病 | 磁共振成像 | 深度学习 | 磁共振图像 | NA | NA | NA | NA | NA |
| 1708 | 2025-12-04 |
Explainable machine learning and deep learning models for predicting TAS2R-bitter molecule interactions
2026-Jan, Journal of molecular graphics & modelling
IF:2.7Q2
DOI:10.1016/j.jmgm.2025.109187
PMID:41092497
|
研究论文 | 本研究开发了可解释的机器学习和深度学习模型,用于预测苦味分子与TAS2R受体之间的相互作用 | 结合传统机器学习和深度学习方法,构建高性能且易于应用的模型,并通过协同集成增强模型的可解释性,促进对苦味化合物分子特性的全面理解 | NA | 预测苦味分子与TAS2R受体之间的相互作用,以辅助实验研究、药物设计及理解苦味受体功能 | 苦味分子与TAS2R(苦味受体)之间的相互作用 | 机器学习 | NA | NA | 机器学习,深度学习 | 实验验证数据 | NA | NA | NA | NA | NA |
| 1709 | 2025-12-04 |
A multi-task deep learning model based on transformer for simultaneously evaluating the TVB-N and TVC contents of chicken breasts using two different hyperspectral imaging
2025-Dec-25, Food chemistry
IF:8.5Q1
DOI:10.1016/j.foodchem.2025.146725
PMID:41106264
|
研究论文 | 本研究开发了一种基于Transformer的多任务深度学习模型,结合双高光谱成像技术,用于同时预测鸡胸肉的总挥发性盐基氮和总活菌数含量 | 提出了一种新颖的多任务交错组Transformer模型,首次将双高光谱成像数据集成到多任务学习中,有效利用双光谱源的互补信息,在预测精度和稳定性上超越了现有CNN和Transformer模型,同时计算成本降低了50% | 研究仅针对鸡胸肉进行,未涉及其他肉类或食品类型;模型在工业环境中的大规模实时应用效果仍需进一步验证 | 开发一种可靠、无损的鸡肉新鲜度批量检测方法,用于肉类质量评估的工业应用 | 鸡胸肉 | 计算机视觉 | NA | 高光谱成像 | Transformer | 高光谱图像 | NA | NA | 多任务交错组Transformer模型 | 决定系数 | NA |
| 1710 | 2025-12-04 |
Characterization of a Novel Mutansucrase (MUT-I) from Leuconostoc pseudomesenteroides G29: Enzymatic Properties and Product Analysis
2025-Dec-03, Journal of agricultural and food chemistry
IF:5.7Q1
DOI:10.1021/acs.jafc.5c03636
PMID:41258707
|
研究论文 | 本研究对来自Leuconostoc pseudomesenteroides G29的新型突变蔗糖酶MUT-I进行了生化表征,包括其酶学性质、产物分析及其在α-葡聚糖工程中的应用潜力 | 首次对G29菌株的MUT-I酶进行详细生化表征,揭示了其双功能特性(合成葡聚寡糖和引入α-1,3分支),并利用AlphaFold 3深度学习工具识别了关键催化残基 | 研究主要基于体外实验,未涉及体内应用或大规模生产验证 | 表征新型突变蔗糖酶MUT-I的酶学性质,评估其在合成结构明确的α-葡聚糖方面的应用潜力 | 来自Leuconostoc pseudomesenteroides G29的突变蔗糖酶MUT-I及其合成的α-葡聚糖产物 | 生物化学与酶工程 | NA | 酶学表征、产物分析、深度学习结构预测 | 深度学习模型 | 酶学实验数据、结构预测数据 | 单一酶蛋白(重组MUT-I)及其产物 | AlphaFold 3 | AlphaFold 3 | 酶活性参数(Km、kcat)、产物结构分析(链接类型、分子量、热稳定性) | NA |
| 1711 | 2025-12-04 |
Deep learning model for activity cliffs prediction: a comprehensive approach to protein kinase inhibitors
2025-Dec-03, Journal of computer-aided molecular design
IF:3.0Q2
DOI:10.1007/s10822-025-00721-1
PMID:41331397
|
NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
| 1712 | 2025-12-04 |
Urban expansion identification and change analysis in Panjin China from 1990 to 2020
2025-Dec-03, Scientific reports
IF:3.8Q1
DOI:10.1038/s41598-025-29448-7
PMID:41331411
|
研究论文 | 本研究利用深度学习模型和时间-光谱-纹理组合优化方法,分析了盘锦市1990年至2020年不透水表面的动态变化,以优化城市空间结构和促进可持续发展 | 提出了一种新颖的深度学习模型和时间-光谱-纹理组合优化方法,用于识别基于像素的土地覆盖变化轨迹,并利用分段线性回归模型确定城市扩张的时间节点 | NA | 优化城市空间结构和促进可持续发展 | 盘锦市(中国的一个资源型城市) | 计算机视觉 | NA | 时间-光谱-纹理组合优化方法 | 深度学习模型 | 图像 | NA | NA | NA | 轨迹分类准确率, 宏观F1分数, 城市扩张时间识别准确率 | NA |
| 1713 | 2025-12-04 |
Low-Field Magnetic Resonance Imaging of the Late Gestation Cervix and Birth Outcome Correlation: A Prospective Cohort Study
2025-Dec-03, BJOG : an international journal of obstetrics and gynaecology
DOI:10.1111/1471-0528.70103
PMID:41332358
|
研究论文 | 本研究利用低场MRI对晚期妊娠宫颈进行重建和3D建模,并自动化测量以关联人口统计学和分娩结局 | 开发了一种新颖、准确的自动化系统,用于评估MRI晚期妊娠宫颈生物测量和体积测量,并首次揭示了晚期妊娠宫颈表型可能影响分娩结局 | 研究样本仅包括首次尝试阴道分娩的晚期妊娠妇女,可能限制了结果的普遍性 | 通过低场MRI技术自动化测量宫颈参数,并探索其与人口统计学和分娩结局的相关性 | 晚期妊娠(36-41周)的妇女 | 数字病理学 | NA | 低场MRI,2D T2加权Turbo-Spin-Echo序列 | 3D深度学习分割网络 | MRI图像 | 97名晚期妊娠妇女 | NA | NA | 图像重建质量,分割质量,评分者间变异性 | 0.55T Freemax MRI扫描仪 |
| 1714 | 2025-12-04 |
Assessing the robustness of deep learning based brain age prediction models across multiple EEG datasets
2025-Dec-02, IEEE transactions on bio-medical engineering
DOI:10.1109/TBME.2025.3639477
PMID:41329579
|
研究论文 | 本研究通过系统评估深度学习模型在多个EEG数据集上的脑年龄预测性能,探讨了数据集偏移对模型泛化能力的影响 | 首次在脑年龄预测任务中系统评估深度学习模型对多个EEG数据集的泛化能力,并测试了1805种超参数配置 | 模型性能在不同数据集间差异显著,部分情况下R²出现负值,表明模型泛化能力仍受数据集特性限制 | 评估基于深度学习的脑年龄预测模型在多个EEG数据集上的鲁棒性和泛化能力 | 五个不同的EEG数据集 | 机器学习 | NA | 脑电图(EEG) | 深度学习模型 | EEG信号 | 五个EEG数据集(具体样本数未说明) | NA | NA | Pearson相关系数, R² | NA |
| 1715 | 2025-12-04 |
A Multi-degradation Fundus Image Restoration Network Guided by Frequency Prompt
2025-Dec-02, IEEE transactions on medical imaging
IF:8.9Q1
DOI:10.1109/TMI.2025.3639308
PMID:41329577
|
研究论文 | 本文提出了一种多退化眼底图像恢复网络(MFR-Net),通过频率感知提示学习统一处理复杂退化场景 | 提出了一种集成频率感知提示学习的全合一恢复框架,能够全面提取不同退化成分的频率域特征,并通过设计的提示生成和交互模块注入主干网络,同时结合无监督域适应以增强模型领域泛化能力 | NA | 开发一种能够处理多组分退化的眼底图像恢复方法,以提高临床诊断中图像质量 | 眼底图像 | 计算机视觉 | NA | 深度学习 | CNN | 图像 | NA | NA | MFR-Net | 定量指标 | NA |
| 1716 | 2025-12-04 |
Accurate Protein-Protein Interaction Prediction: Based on Multiview Heterogeneous Graph Autoencoders and Random Masking
2025-Dec-02, IEEE transactions on neural networks and learning systems
IF:10.2Q1
DOI:10.1109/TNNLS.2025.3632083
PMID:41329588
|
研究论文 | 本文提出了一种基于多视图异构图自编码器和随机掩码的蛋白质-蛋白质相互作用预测模型MEGAE,旨在通过整合蛋白质的物理化学性质、结构细节和序列数据,实现高精度的PPI及相互作用位点预测 | 创新性地引入了多视图随机掩码训练策略,在重建过程中引入受控随机性以增强微环境嵌入的鲁棒性,并利用图神经网络从局部氨基酸相互作用到全局信号网络连接捕获多层次关系 | 未明确提及模型的计算复杂度或对大规模数据集的扩展性限制 | 实现高精度的蛋白质-蛋白质相互作用及其相互作用位点的预测 | 蛋白质-蛋白质相互作用及其相互作用位点 | 机器学习 | NA | 深度学习,图神经网络 | 自编码器,图神经网络 | 序列数据,结构数据,物理化学性质数据 | NA | NA | 向量量化自编码器,图神经网络 | 准确率 | NA |
| 1717 | 2025-12-04 |
A Teacherless Lightweight Classification Framework for Benign and Malignant Pulmonary Nodules based on GAS
2025-Dec-02, Biomedical physics & engineering express
IF:1.3Q3
DOI:10.1088/2057-1976/ae268a
PMID:41329998
|
研究论文 | 本文提出了一种基于GAS(Ghost-Attention Separation)网络的无教师轻量级分类框架,用于区分良性和恶性肺结节 | 提出了一种结合注意力机制、残差学习和改进的DWSGhost模块的GAS网络,并采用无教师知识蒸馏策略构建轻量级分类模型,参数量仅119,245个,占用空间仅0.45 MB | 未明确说明模型在更广泛临床环境中的泛化能力或与其他最先进轻量级模型的详细对比 | 开发一种轻量级、高效的肺结节良恶性分类方法,以解决现有模型内存占用高、计算成本大和参数量多的问题 | 肺结节(良性和恶性) | 计算机视觉 | 肺癌 | 深度学习 | CNN | 图像 | 三个数据集:LIDC-IDRI、LungX Challenge和郑州第九人民医院数据集 | 未明确指定 | GAS(Ghost-Attention Separation)网络,包含注意力机制、残差学习和改进的DWSGhost模块 | 未明确指定具体指标,但提及了分类性能 | 未明确指定 |
| 1718 | 2025-12-04 |
Ultrasound of lung parenchyma - current state and future
2025-Dec-02, The British journal of radiology
DOI:10.1093/bjr/tqaf288
PMID:41330697
|
综述 | 本文综述了胸部超声在评估肺实质方面的当前应用、诊断局限性及未来发展趋势 | 探讨了深度学习增强胸部超声辅助诊断的新兴领域,并强调了COVID-19大流行如何扩展了肺实质超声从诊断到监测的应用范围 | 缺乏关于能力评估和教育的共识 | 提供胸部超声在肺实质评估中的当前使用和诊断局限性的概述,并展望未来发展 | 肺实质的超声评估 | 数字病理学 | 肺癌 | 胸部超声 | 深度学习 | 超声图像 | NA | NA | NA | NA | NA |
| 1719 | 2025-12-04 |
A multicenter validation study of 3D V-Net-based segmentation model for adrenal glands: Cross-protocol generalization from abdominal CT to chest CT
2025-Dec-02, The British journal of radiology
DOI:10.1093/bjr/tqaf294
PMID:41330715
|
研究论文 | 本研究开发了一种基于3D V-Net的肾上腺分割模型,并在多中心数据集上验证了其从腹部CT到胸部CT的泛化能力 | 该研究首次利用3D V-Net开发了肾上腺分割模型,并成功验证了其在跨协议(从腹部CT到胸部CT)和多中心数据集上的泛化性能 | 研究未明确提及模型在更广泛疾病类型或不同扫描参数下的性能,且外部验证队列样本量相对较小 | 建立并验证一个基于深度学习的肾上腺自动分割模型,以辅助医学影像诊断 | 肾上腺 | 数字病理 | 肾上腺疾病 | CT扫描 | CNN | 3D CT图像 | 训练集5660例腹部CT扫描,验证集包括来自同一机构的6126例和外部机构的931例胸部CT扫描 | NA | 3D V-Net | Dice相似系数 | NA |
| 1720 | 2025-12-04 |
Dense extreme inception network-based edge detection with deep reinforcement learning for object localization in an underwater environment
2025-Dec-02, Scientific reports
IF:3.8Q1
DOI:10.1038/s41598-025-29378-4
PMID:41331029
|
研究论文 | 本文提出了一种基于密集极端初始网络边缘检测与深度强化学习的水下环境物体定位技术 | 结合Dense Extreme Inception Network(DexiNed)进行边缘检测,并集成YOLOv5进行物体检测,最后使用Q-强化学习进行分类,实现水下环境中的高效物体定位 | 未提及技术在水下复杂环境(如浑浊水域或极端光照条件)中的泛化能力及实时性能评估 | 提高水下环境中物体边缘检测和分类的准确性与效率 | 水下环境中的自然特征(如地质构造、海洋生物、珊瑚礁)和人造物体(如碎片、沉船、水下基础设施) | 计算机视觉 | NA | 光学相机、SONAR、LIDAR成像技术 | CNN, 强化学习 | 图像 | 未明确指定样本数量,但使用了水下物体检测数据集进行实验 | 未明确指定,可能涉及PyTorch或TensorFlow(基于YOLOv5的常见实现) | Dense Extreme Inception Network(DexiNed), YOLOv5 | 准确率 | NA |