深度学习在生物医药领域的应用

本数据库通过收集和整理最新科研文献信息而得,供了解领域前沿进展之用。数据源自 PubMed Data ,每日自动更新(使用关键词“['deep learning']”过滤),已收录文献数量参见 统计表格。表格内容由 GPT 自动整理,可能存在错误或遗漏,请使用时务必注意核实!

如有建议或合作意向,欢迎联系 linlin.yan(AT)bioinfo.app 或 微信 yanlinlin82。本项目遵循 MIT 许可 发布,欢迎下载 源码 自行修改使用。如觉得不错,还请不吝 给我打赏,你的支持是我继续创新的重要动力!

Sample Image
添加微信请说明来意
Sample Image
微信赞赏

除通过在线浏览外,为方便用户离线查阅,本站也提供 付费下载(定价19.9元)。之所以考虑收费,是因为批量扫描这些文献并整理也是有一定成本的,还请理解并多多支持。本站数据会持续更新,而仅需一次付费,未来就可以随时重新下载到最新版本数据。

当前筛选条件: [分区不过滤] [IF不过滤] [发表日期不过滤] [清除筛选条件]
当前共找到 33929 篇文献,本页显示第 17301 - 17320 篇。
序号 推送日期 文章 类型 简述 创新点 不足 研究目的 研究对象 领域 病种 技术 模型 数据类型 样本量 算法框架 模型架构 性能指标 计算资源
17301 2025-03-05
Feasibility of using Gramian angular field for preprocessing MR spectroscopy data in AI classification tasks: Differentiating glioblastoma from lymphoma
2025-Mar, European journal of radiology IF:3.2Q1
研究论文 本文探讨了使用Gramian角场将1D光谱转换为2D图像,作为卷积神经网络输入用于胶质母细胞瘤与淋巴瘤分类任务的可行性 首次将Gramian角场技术应用于MR光谱数据的预处理,以生成适合深度学习算法输入的2D图像 研究样本量较小,仅包括98名患者,且仅比较了傅里叶变换后的原始光谱和后处理拟合光谱的分类性能 探索MR光谱数据在神经网络分类任务中的应用潜力 胶质母细胞瘤和淋巴瘤患者 数字病理学 胶质母细胞瘤, 淋巴瘤 MR光谱, Gramian角场 卷积神经网络(CNN) 图像 98名患者(65名胶质母细胞瘤,33名淋巴瘤) NA NA NA NA
17302 2025-10-07
Predicting Progression in Adolescent Idiopathic Scoliosis at the First Visit by Integrating 2D Imaging and 1D Clinical Information
2025-Mar, Global spine journal IF:2.6Q1
研究论文 本研究开发了一种集成临床数据和放射影像的神经网络模型,用于预测青少年特发性脊柱侧凸患者的支具内曲线进展 首次将一维临床数据和二维放射影像数据整合到自动化预测模型中,相比传统方法能更充分利用多维度信息 回顾性研究设计,样本量相对有限(463例患者) 预测青少年特发性脊柱侧凸患者的曲线进展情况 青少年特发性脊柱侧凸患者,特别是需要支具治疗的患者 医学影像分析 脊柱侧凸 放射影像分析,临床参数测量 CapsuleNet 图像,临床数据 463名患者 NA 改进的CapsuleNet架构 灵敏度,准确率 NA
17303 2025-10-07
Fluid Inverse Volumetric Modeling and Applications From Surface Motion
2025-Mar, IEEE transactions on visualization and computer graphics IF:4.7Q1
研究论文 提出了一种从可观测表面运动进行流体体积重建的创新框架 结合深度学习与传统模拟的优势,通过表面运动推断体积速度场并估计流体物理属性 NA 实现从表面运动到体积流体的逆向建模 合成流体和真实捕获的流体 计算机视觉 NA 深度学习模拟 3D CNN 表面运动序列 NA NA 3D CNN 视觉一致性,物理准确性 NA
17304 2025-03-05
Specialized ECG data augmentation method: leveraging precordial lead positional variability
2025-Mar, Biomedical engineering letters IF:3.2Q2
研究论文 本文介绍了一种针对心电图(ECG)数据的专门数据增强技术,通过考虑12导联ECG中胸前导联之间的独特角度,提出了一种在临床环境中可能发生的情况下的数据增强方法,并用于训练深度学习模型以诊断多种心脏疾病 本文的创新点在于提出了一种专门针对ECG数据的数据增强技术,考虑了胸前导联之间的独特角度,并在多种数据集和任务中展示了其性能提升 本文的局限性在于未提及该方法在其他类型生物信号处理中的适用性,且未详细讨论其在更大规模数据集上的表现 研究目的是开发一种优化的数据增强技术,以提高ECG数据的深度学习模型诊断心脏疾病的准确性 研究对象是12导联ECG数据,特别是胸前导联之间的角度变化 生物信号处理 心血管疾病 数据增强技术 深度学习模型 ECG信号 NA NA NA NA NA
17305 2025-03-05
Reinforcement learning-based generative artificial intelligence for novel pesticide design
2025-Mar-01, Journal of advanced research IF:11.4Q1
研究论文 本研究提出了一种基于强化学习的生成人工智能框架,用于设计具有高结合亲和力的农药样分子 首次将生成人工智能应用于农药设计,提出了结合强化学习的框架,并成功设计出一种新型4-羟基苯基丙酮酸双加氧酶抑制剂 未提及具体样本量或实验数据规模 探索生成人工智能在农药设计中的应用,开发新型绿色农药 农药样分子 机器学习 NA 强化学习,蒙特卡洛树搜索算法 生成模型 化学分子数据 NA NA NA NA NA
17306 2025-03-05
Discordance between a deep learning model and clinical-grade variant pathogenicity classification in a rare disease cohort
2025-Feb-28, NPJ genomic medicine IF:4.7Q1
研究论文 本文探讨了深度学习模型AlphaMissense在预测错义变体功能影响和评估基因必要性方面的局限性,特别是在罕见疾病队列中的表现 揭示了AlphaMissense在识别致病性错义变体方面的不足,尤其是在内在无序区域(IDRs)的评估上 AlphaMissense在识别致病性错义变体方面的精确度和召回率较低,特别是在IDRs区域的表现不可靠 评估深度学习模型在罕见疾病中预测错义变体致病性的能力 罕见疾病队列中的错义变体 生物医学信息学 罕见疾病 深度学习 AlphaMissense 基因变异数据 45种罕见疾病队列 NA NA NA NA
17307 2025-03-05
Framework for smartphone-based grape detection and vineyard management using UAV-trained AI
2025-Feb-28, Heliyon IF:3.4Q1
研究论文 本文提出了一种结合无人机和智能手机技术的AI框架,用于葡萄串的自动检测和葡萄园管理 结合无人机和智能手机技术,利用无人机捕获的数据进行训练,提高了葡萄串检测的准确性和适应性,超越了传统和纯无人机方法 基于智能手机的图像收集用于模型训练是劳动密集型和成本高昂的 提高葡萄串检测的效率和准确性,减少葡萄园监测的时间和精力 葡萄园中的葡萄串 计算机视觉 NA 深度学习 X-Decoder, YOLO 图像, 视频 无人机视频数据集(BBCH77-BBCH79阶段)和智能手机拍摄的图像 NA NA NA NA
17308 2025-03-05
A GPR-based framework for assessing corrosivity of concrete structures using frequency domain approach
2025-Feb-28, Heliyon IF:3.4Q1
研究论文 本文提出了一种基于GPR的框架,用于评估混凝土结构的腐蚀性,采用频域分析方法 引入了一种更全面的GPR数据解释方法,包括时间和时频域分析,结合深度学习和频域分析技术 方法依赖于地面真实条件的验证,可能在实际应用中受到限制 开发一种更准确的GPR数据解释方法,用于评估混凝土结构的腐蚀性 混凝土结构中的钢筋腐蚀 无损检测 NA GPR, 短时傅里叶变换(STFT) 深度学习 GPR数据 钢筋混凝土墙的锤击和钢筋暴露验证 NA NA NA NA
17309 2025-03-05
CANDI: a web server for predicting molecular targets and pathways of cannabis-based therapeutics
2025-Feb-27, Journal of cannabis research IF:4.1Q1
研究论文 本文介绍了CANDI,一个用于预测大麻基治疗分子靶点和途径的网页服务器 结合深度学习和传统大麻使用知识,开发了CANDI服务器,为大麻化合物的治疗潜力提供了新的预测工具 NA 研究大麻化合物的分子靶点和相关途径,以开发针对性的有效大麻基疗法 大麻化合物及其分子靶点和途径 自然语言处理 癌症 深度学习 基于注意力的神经网络 化合物-靶点相互作用数据 NA NA NA NA NA
17310 2025-03-05
Comparative Study of Machine Learning and System Identification for Process Systems Engineering Dynamics
2025-Feb-26, Industrial & engineering chemistry research IF:3.8Q2
研究论文 本研究对传统系统辨识和现代机器学习模型在过程系统工程(PSE)动态系统数据驱动建模中的应用进行了全面基准测试 使用AutoSID框架,结合MLOps原则,对12种不同模型架构在11个PSE案例研究中进行比较,展示了贝叶斯优化和k折交叉验证在模型选择中的有效性 研究主要关注PSE应用,可能在其他领域的适用性有限 比较传统系统辨识和现代机器学习模型在PSE动态系统建模中的性能 过程系统工程(PSE)动态系统 机器学习 NA 贝叶斯优化, k折交叉验证 树集成模型, 深度学习模型 动态系统数据 11个PSE案例研究 NA NA NA NA
17311 2025-03-05
Generative Deep Learning-Based Efficient Design of Organic Molecules with Tailored Properties
2025-Feb-26, ACS central science IF:12.7Q1
研究论文 本研究开发了一种生成式深度学习模型(Gen-DL),用于设计具有特定光学性质的有机分子 该模型能够利用分子结构-性质关系,生成具有指定光学性质的分子,并应用于实际场景 NA 加速具有特定性质分子的发现与设计 有机分子 机器学习 NA 生成式深度学习 Gen-DL 分子/溶剂对数据 71,424个分子/溶剂对 NA NA NA NA
17312 2025-03-05
Using wearable sensors and machine learning to assess upper limb function in Huntington's disease
2025-Feb-25, Communications medicine IF:5.4Q1
研究论文 本研究利用可穿戴传感器和机器学习评估亨廷顿病患者的上肢功能 通过可穿戴传感器和深度学习模型监测现实世界中的上肢功能,提供更全面的疾病症状理解 样本量较小(HD=16, pHD=7, CTR=16),可能影响结果的普遍性 评估亨廷顿病患者的上肢功能,探索早期检测和远程监测的可能性 亨廷顿病患者(HD)、前驱期亨廷顿病患者(pHD)和对照组(CTR) 机器学习 亨廷顿病 深度学习模型 统计和机器学习模型 传感器数据 HD=16, pHD=7, CTR=16 NA NA NA NA
17313 2025-03-05
Proteomic Characterization of Cardioprotective Human Acellular Amniotic Fluid
2025-Feb-25, ACS omega IF:3.7Q2
研究论文 本文通过全球蛋白质组学分析,揭示了人类羊水(hAF)在心肌缺血再灌注损伤中的心脏保护作用的生物活性成分 首次基于质谱技术对足月无细胞人类羊水进行蛋白质组学表征,揭示了其免疫调节蛋白的多样性及其在心脏保护中的作用 研究样本量较小,仅包括六名患者的羊水样本 揭示人类羊水在心肌缺血再灌注损伤中的心脏保护作用的生物活性成分 足月无细胞人类羊水 蛋白质组学 心血管疾病 串联质谱 NA 蛋白质数据 六名患者的羊水样本 NA NA NA NA
17314 2025-03-05
Leveraging a Vision-Language Model with Natural Text Supervision for MRI Retrieval, Captioning, Classification, and Visual Question Answering
2025-Feb-20, bioRxiv : the preprint server for biology
研究论文 本文介绍了一种基于向量检索和对比学习的框架,通过自然语言监督有效学习视觉脑MRI概念,并展示了该方法如何通过联合嵌入和自然语言监督识别影响阿尔茨海默病(AD)大脑的因素 提出了一种基于自然语言监督的多任务学习框架,能够执行MRI检索、MRI描述、MRI分类和视觉问答等多种任务,突破了传统深度学习算法在放射学研究中只能执行单一任务的限制 未提及具体的数据隐私保护措施和服务托管及数据存储的透明度问题 开发一种能够通过自然语言提示执行多种任务的深度学习算法,以提高放射学研究和医学研究中的数据处理效率和准确性 脑MRI图像 计算机视觉 阿尔茨海默病 自然语言监督、对比学习、自监督学习 Transformer 图像、文本 NA NA NA NA NA
17315 2025-03-05
Parameter Efficient Fine-tuning of Transformer-based Masked Autoencoder Enhances Resource Constrained Neuroimage Analysis
2025-Feb-20, bioRxiv : the preprint server for biology
研究论文 本文评估了在预训练的视觉Transformer上应用参数高效微调(PEFT)方法的效果,特别是在资源受限的神经影像分析中的应用 首次在神经影像分析中应用PEFT方法,显著减少了可训练参数数量,同时保持了或超越了传统全微调方法的性能 研究主要基于T1加权脑MRI数据,未涉及其他类型的神经影像数据 探索参数高效微调方法在神经影像分析中的应用效果 T1加权脑MRI数据 计算机视觉 阿尔茨海默病, 帕金森病 参数高效微调(PEFT) Transformer-based Masked Autoencoder (MAE) 图像 258个训练扫描 NA NA NA NA
17316 2025-03-05
GFLearn: Generalized Feature Learning for Drug-Target Binding Affinity Prediction
2025-Feb-04, IEEE journal of biomedical and health informatics IF:6.7Q1
研究论文 本文提出了一种新的广义特征学习模型(GFLearn),用于药物-靶标结合亲和力预测,通过整合图神经网络(GNNs)和自监督不变特征学习模块,显著提高了预测性能 GFLearn模型通过整合图神经网络和自监督不变特征学习模块,能够从未见过的药物或靶标中提取鲁棒且高度可泛化的特征,从而显著提高预测性能 NA 提高药物-靶标结合亲和力预测的准确性和泛化能力 药物和靶标 机器学习 NA 图神经网络(GNNs),自监督不变特征学习 GFLearn 药物和靶标的数据 两个不同的数据集,涉及新药物、新靶标及其组合的三种挑战性场景 NA NA NA NA
17317 2025-03-05
Matryoshka: Exploiting the Over-Parametrization of Deep Learning Models for Covert Data Transmission
2025-Feb, IEEE transactions on pattern analysis and machine intelligence IF:20.8Q1
研究论文 本文提出了一种名为Matryoshka的新型内部攻击,利用深度学习模型的过参数化特性进行隐蔽数据传输 提出了一种新的参数共享方法,利用载体模型的学习能力进行信息隐藏,实现了高容量、解码效率、有效性、鲁棒性和隐蔽性 未提及具体的技术限制或实验中的不足 揭示即使没有暴露接口,机器学习数据的隐私也可能被破坏的可能性 深度学习模型和机器学习数据 机器学习 NA 深度学习 DNN 模型参数 超过10,000个真实世界数据样本 NA NA NA NA
17318 2025-03-05
Interactive Isosurface Visualization in Memory Constrained Environments Using Deep Learning and Speculative Raycasting
2025-Feb, IEEE transactions on visualization and computer graphics IF:4.7Q1
研究论文 本文提出了一种新颖的隐式等值面渲染算法,用于在内存受限的环境中进行大规模体积数据的交互式可视化 通过渐进式遍历光线波前并按需解压数据块来执行隐式光线-等值面交叉,同时使用预训练的深度神经网络改进中间结果的质量,并引入推测性光线-块交叉以加速渲染和提高GPU利用率 算法在图像质量和渲染时间之间进行权衡,可能会影响最终图像的精度 解决在轻量级终端设备上可视化大规模数据集时的内存限制问题 大规模体积数据 计算机视觉 NA 深度学习 深度神经网络 体积数据 NA NA NA NA NA
17319 2025-03-05
Sparse Non-Local CRF With Applications
2025-Feb, IEEE transactions on pattern analysis and machine intelligence IF:20.8Q1
研究论文 本文提出了一种新的成对条件随机场(CRF)模型,称为稀疏非局部CRF,该模型结合了稀疏CRF的效率和密集CRF的非局部连接特性 提出了一种新的稀疏非局部CRF模型,结合了稀疏CRF的效率和密集CRF的非局部连接特性,且边缘权重不受限制 未明确提及具体局限性 研究一种新的CRF模型,以提高计算机视觉任务中的空间一致性建模效率 图像像素 计算机视觉 NA 条件随机场(CRF) 稀疏非局部CRF 图像 NA NA NA NA NA
17320 2025-03-05
Intelligent Bionic Polarization Orientation Method Using Biological Neuron Model for Harsh Conditions
2025-Feb, IEEE transactions on pattern analysis and machine intelligence IF:20.8Q1
研究论文 本文开发了一种智能创新定向方法,以提高在恶劣条件下偏振罗盘的准确性 该方法结合了生物神经元模型和卷积神经网络,模拟了Syrphidae视觉神经通路的高效感知机制,并优化了自适应反对称环算法,提高了在弱偏振条件下的定向精度 NA 提高在恶劣天气条件和局部遮挡情况下的偏振罗盘定向精度 偏振罗盘在恶劣条件下的定向精度 计算机视觉 NA 卷积神经网络(CNN) CNN 图像 NA NA NA NA NA
回到顶部