本数据库通过收集和整理最新科研文献信息而得,供了解领域前沿进展之用。数据源自 PubMed Data ,每日自动更新,已收录文献数量参见 统计表格。表格内容由 GPT 自动整理,可能存在错误或遗漏,请使用时务必注意核实!
如有建议或合作意向,欢迎联系 linlin.yan(AT)bioinfo.app 或 微信 yanlinlin82。本项目遵循 MIT 许可 发布,欢迎下载 源码 自行修改使用。如觉得不错,还请不吝 给我打赏,你的支持是我继续创新的重要动力!
除通过在线浏览外,为方便用户离线查阅,本站也提供 付费下载(定价10元)。之所以考虑收费,是因为批量扫描这些文献并整理也是有一定成本的,还请理解并多多支持。本站数据会持续更新,而仅需一次付费,未来就可以随时重新下载到最新版本数据。
序号 | 推送日期 | 文章 | 类型 | 简述 | 创新点 | 不足 | 研究目的 | 研究对象 | 领域 | 病种 | 技术 | 模型 | 数据类型 | 样本量 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
17341 | 2024-08-07 |
Artificial intelligence in endocrinology: a comprehensive review
2024-May, Journal of endocrinological investigation
IF:3.9Q2
DOI:10.1007/s40618-023-02235-9
PMID:37971630
|
综述 | 本文全面回顾了人工智能在内分泌学领域的应用现状,重点关注机器学习算法和深度学习模型在诊断、治疗和管理内分泌疾病中的潜力 | 探讨了人工智能在内分泌学多个领域的应用,包括筛查诊断、风险预测、转化研究和预防医学,展示了其在优化医疗结果和揭示内分泌疾病复杂机制中的价值 | NA | 提供人工智能在内分泌学和代谢领域应用的概述 | 内分泌疾病,如糖尿病及相关疾病、甲状腺疾病、肾上腺肿瘤和骨矿物质疾病 | 机器学习 | 内分泌疾病 | NA | 机器学习算法和深度学习模型 | NA | NA |
17342 | 2024-08-07 |
Underwater sound speed profile estimation from vessel traffic recordings and multi-view neural networks
2024-May-01, The Journal of the Acoustical Society of America
IF:2.1Q1
DOI:10.1121/10.0025920
PMID:38717207
|
研究论文 | 本文研究了利用海洋船舶噪声作为机会声源来估计海洋声速剖面的潜力,并提出了一种基于深度学习的反演方案 | 本文提出了一种新的深度学习方法,利用单个水听器记录的移动船舶水下辐射噪声来估计海洋声速剖面 | 研究仅限于圣巴巴拉海峡,且数据集仅包含2015年至2017年的记录 | 探索利用海洋船舶噪声估计海洋声速剖面的方法 | 海洋声速剖面 | 机器学习 | NA | 深度学习 | 神经网络 | 声学记录和船舶描述数据 | 数据集包括2015年至2017年间圣巴巴拉海峡的船舶自动识别系统数据和声学记录,每天通常记录4到10次航行 |
17343 | 2024-08-07 |
Predicting underwater acoustic transmission loss in the SOFAR channel from ray trajectories via deep learning
2024-May-01, JASA express letters
IF:1.2Q3
DOI:10.1121/10.0025976
PMID:38717470
|
研究论文 | 本文提出了一种基于深度学习的声学传输损失预测方法,通过训练U-net型卷积神经网络,实现射线轨迹与传输损失之间的准确映射 | 采用深度学习方法简化传统复杂算法和计算密集型问题,提供了一种快速且准确的预测模型 | NA | 解决声学传输损失预测中的算法复杂和计算密集问题 | 水下声学传输损失 | 机器学习 | NA | 深度学习 | U-net型卷积神经网络 | 射线轨迹 | 使用Munk声速剖面的SOFAR通道进行验证 |
17344 | 2024-08-07 |
DeepLabCut-based daily behavioural and posture analysis in a cricket
2024-Apr-15, Biology open
IF:1.8Q3
DOI:10.1242/bio.060237
PMID:38533608
|
研究论文 | 本文介绍了一种基于DeepLabCut的系统,用于长期量化单个蟋蟀的多种行为,如运动活动、进食和类似睡眠状态 | 该系统利用DeepLabCut软件,通过监督式机器学习进行身体关键点标记,无需物理标记个体动物,减少了人为偏差 | NA | 研究蟋蟀的昼夜节律及其神经机制 | 蟋蟀的行为和姿势 | 机器学习 | NA | DeepLabCut | 监督式机器学习 | 视频 | 单个蟋蟀 |
17345 | 2024-08-07 |
Artificial intelligence in liver imaging: methods and applications
2024-Apr, Hepatology international
IF:5.9Q1
DOI:10.1007/s12072-023-10630-w
PMID:38376649
|
综述 | 本文综述了基于医学影像的人工智能方法及其在肝脏疾病管理中的应用 | 重点介绍了深度学习在肝脏影像中的代表性方法及其在精确检测、诊断和治疗肝脏疾病中的临床应用 | 强调了当前面临的挑战,如特征可解释性、多模态数据集成和多中心研究 | 探讨人工智能方法在肝脏疾病管理中的应用及其未来发展 | 肝脏疾病及其影像学评估 | 计算机视觉 | 肝脏疾病 | 深度学习 | NA | 影像 | NA |
17346 | 2024-08-07 |
AI-Driven Clinical Decision Support Systems: An Ongoing Pursuit of Potential
2024-Apr, Cureus
DOI:10.7759/cureus.57728
PMID:38711724
|
综述 | 本文综述了人工智能(AI)技术如何革新临床决策支持系统(CDSS),包括其在医疗决策中的应用、相关挑战以及实现AI-CDSS潜力的未来方向。 | 强调了AI在提升CDSS效能和效率中的日益重要的作用,并探讨了AI技术如机器学习算法、自然语言处理和深度学习在CDSS中的集成。 | 讨论了AI集成中的挑战,如可解释性和偏见问题,并提出了成功采用AI-CDSS的策略,强调了工作流程对齐和跨学科合作的重要性。 | 探讨AI技术如何改变CDSS,并推动其在医疗实践中的应用。 | 研究对象包括AI技术在CDSS中的应用,如AI驱动的诊断、个性化治疗建议、风险预测和临床文档辅助。 | NA | NA | 机器学习算法、自然语言处理、深度学习 | 神经网络、决策树 | NA | NA |
17347 | 2024-08-07 |
Evaluating large language models for annotating proteins
2024-Mar-27, Briefings in bioinformatics
IF:6.8Q1
DOI:10.1093/bib/bbae177
PMID:38706315
|
研究论文 | 本文评估了使用大型语言模型(LLMs)进行蛋白质注释的新协议 | 提出了一种基于迁移学习的新协议,使用大型语言模型在大量未注释数据集上进行自监督训练,以获得序列嵌入,然后在小规模注释数据集上进行监督学习,以提高蛋白质域注释的预测 | 深度学习模型需要大量训练数据,对于人口稀少的家族可能是一个挑战 | 提高蛋白质域注释的准确性和效率 | 蛋白质注释 | 自然语言处理 | NA | 迁移学习 | 大型语言模型(LLMs) | 序列数据 | 超过25100万蛋白质,其中仅0.25%被注释 |
17348 | 2024-08-07 |
GSScore: a novel Graphormer-based shell-like scoring method for protein-ligand docking
2024-Mar-27, Briefings in bioinformatics
IF:6.8Q1
DOI:10.1093/bib/bbae201
PMID:38706316
|
研究论文 | 提出了一种基于Graphormer方法和Shell-like图结构的深度学习评分方法GSScore,用于蛋白质-配体对接姿态的RMSD预测 | GSScore利用Graphormer和Shell-like图结构,能有效捕捉能量上有利的近天然构象与不利的非天然姿态之间的细微差异,无需额外信息 | NA | 开发新的计算方法以更准确地预测蛋白质-配体对接的RMSD | 蛋白质-配体相互作用模式 | 机器学习 | NA | Graphormer方法 | Graphormer | 图结构 | 评估了包括PDBBind 2019版本子集、CASF2016以及DUD-E在内的多样化测试集 |
17349 | 2024-08-07 |
Deep learning assisted single particle tracking for automated correlation between diffusion and function
2024-Feb-02, Research square
DOI:10.21203/rs.3.rs-3716053/v1
PMID:38352328
|
研究论文 | 本文介绍了一种名为DeepSPT的深度学习框架,用于快速高效地解释物体在亚细胞环境中的2D或3D扩散行为 | DeepSPT能够自动从扩散行为中提取功能信息,无需人工干预 | NA | 开发一种自动化方法,从亚细胞环境的扩散行为中提取功能信息 | 亚细胞环境中的分子和细胞器的扩散行为 | 机器学习 | NA | 深度学习 | 深度学习框架 | 图像 | NA |
17350 | 2024-08-07 |
Deep learning based synthesis of MRI, CT and PET: Review and analysis
2024-Feb, Medical image analysis
IF:10.7Q1
DOI:10.1016/j.media.2023.103046
PMID:38052145
|
综述 | 本文综述了2018年至2023年间基于深度学习的医学图像合成技术,包括伪CT、合成MR和合成PET,并分析了各种合成方法的模型设计和网络架构 | 深度学习在合成图像对比度应用中表现出优于传统图像合成方法的性能,特别是引入了Transformer和Diffusion模型等新型网络架构 | 文章讨论了在医学图像合成中存在的挑战,并提出了可能的解决方案和未来研究方向 | 旨在克服获取多种图像模态以实现准确临床工作流程的挑战 | 医学图像合成技术,包括伪CT、合成MR和合成PET | 计算机视觉 | NA | 深度学习 | CNN, Transformer, Diffusion模型 | 图像 | NA |
17351 | 2024-08-07 |
An Ensemble Learning Method for Detection of Head and Neck Squamous Cell Carcinoma Using Polarized Hyperspectral Microscopic Imaging
2024-Feb, Proceedings of SPIE--the International Society for Optical Engineering
DOI:10.1117/12.3007869
PMID:38711533
|
研究论文 | 本研究开发了一种基于偏振高光谱显微成像的集成学习方法,用于检测头颈部鳞状细胞癌 | 利用偏振高光谱显微成像技术和卷积神经网络构建了一种四分支模型架构,每个分支分别训练一个Stokes参数 | 未来的工作可以通过训练更多样化的数据、根据肿瘤分级进行分类以及引入更新的架构技术来改进结果 | 开发一种新的深度学习分类方法,用于检测头颈部鳞状细胞癌 | 头颈部鳞状细胞癌的病理切片 | 计算机视觉 | 头颈部鳞状细胞癌 | 偏振高光谱显微成像 | CNN | 图像 | 56名患者 |
17352 | 2024-08-07 |
Using Artificial Intelligence for Rheumatic Heart Disease Detection by Echocardiography: Focus on Mitral Regurgitation
2024-Jan-16, Journal of the American Heart Association
IF:5.0Q1
DOI:10.1161/JAHA.123.031257
PMID:38226515
|
研究论文 | 本文研究使用人工智能通过超声心动图检测风湿性心脏病,特别是二尖瓣反流 | 本文提出了一种自动化的方法,利用卷积神经网络和深度学习模型结合注意力机制来定位左心房并分析二尖瓣反流,以检测风湿性心脏病 | 研究需要更多的数据来进一步提高模型的准确性 | 探索人工智能在无症状儿童中通过超声心动图检测风湿性心脏病的能力,以预防疾病进展 | 儿童的风湿性心脏病和二尖瓣反流 | 机器学习 | 风湿性心脏病 | 卷积神经网络,深度学习 | CNN,深度学习模型 | 图像 | 511例儿童超声心动图 |
17353 | 2024-08-07 |
A deep learning framework for noninvasive fetal ECG signal extraction
2024, Frontiers in physiology
IF:3.2Q2
DOI:10.3389/fphys.2024.1329313
PMID:38711954
|
研究论文 | 本文开发了一种深度学习框架,用于从12通道腹部复合信号中非侵入性地提取胎儿心电图(ECG)信号的R峰 | 提出了一种使用循环神经网络架构的模型,能够稳健地检测胎儿ECG的R峰 | NA | 开发一种框架,用于直接从腹部复合信号中检测和识别胎儿ECG的R峰 | 从70名健康和有健康状况的孕妇中非侵入性地记录的信号 | 机器学习 | NA | 循环神经网络 | RNN | 信号 | 70名孕妇 |
17354 | 2024-08-07 |
The 100 most cited articles in artificial intelligence related to orthopedics
2024, Frontiers in surgery
IF:1.6Q2
DOI:10.3389/fsurg.2024.1370335
PMID:38712339
|
研究论文 | 本研究旨在识别和分析与骨科领域相关的人工智能领域前100篇高被引文章 | NA | NA | 识别和分析骨科领域中与人工智能相关的高被引文章 | 前100篇高被引文章 | 机器学习 | NA | VOSviewer | NA | 文本 | 100篇文章 |
17355 | 2024-08-07 |
Interpretable deep learning for improving cancer patient survival based on personal transcriptomes
2023-07-13, Scientific reports
IF:3.8Q1
DOI:10.1038/s41598-023-38429-7
PMID:37443344
|
研究论文 | 本文开发了一种可解释的神经网络模型,用于基于药物处方和个人转录组数据预测癌症患者的生存率 | 该模型能够通过分析个人转录组数据和药物处方,提高癌症患者的生存预测准确性,并揭示决策过程中的关键通路 | NA | 提高癌症患者的生存预测准确性并揭示药物选择的关键通路 | 癌症患者的生存率和药物选择 | 机器学习 | 癌症 | 深度学习 | 神经网络 | 转录组数据 | 涉及的患者数量未明确提及 |
17356 | 2024-08-07 |
Deep learning for subtyping the Alzheimer's disease spectrum
2022-02, Trends in molecular medicine
IF:12.8Q1
DOI:10.1016/j.molmed.2021.12.004
PMID:34996710
|
研究论文 | Kwak等人基于结构影像对认知受损个体进行亚型分类,为阿尔茨海默病谱的细分提供了新的见解 | 通过亚型分类量化阿尔茨海默病的异质性,为疾病修饰疗法的开发和患者护理的改进提供了更精准的方法 | NA | 探索阿尔茨海默病谱的亚型分类 | 认知受损个体 | 机器学习 | 阿尔茨海默病 | 深度学习 | NA | 影像 | NA |
17357 | 2024-08-07 |
Detection of dementia on voice recordings using deep learning: a Framingham Heart Study
2021-08-31, Alzheimer's research & therapy
DOI:10.1186/s13195-021-00888-3
PMID:34465384
|
研究论文 | 本研究利用深度学习模型分析语音记录,以检测痴呆症 | 开发了两种深度学习模型(LSTM和CNN),用于自动分析语音记录并分类痴呆症患者 | NA | 探索通过语音记录自动检测痴呆症的方法 | 来自Framingham心脏研究的1264份语音记录 | 机器学习 | 痴呆症 | 深度学习 | LSTM和CNN | 音频 | 1264份语音记录,包括483份正常认知、451份轻度认知障碍和330份痴呆症 |
17358 | 2024-08-07 |
U-net model for brain extraction: Trained on humans for transfer to non-human primates
2021-07-15, NeuroImage
IF:4.7Q1
DOI:10.1016/j.neuroimage.2021.118001
PMID:33789137
|
研究论文 | 本文利用迁移学习框架,通过在大型人类成像数据集上预训练卷积神经网络(U-Net模型),并将其迁移到非人灵长类动物数据上,以提高脑提取的准确性和效率。 | 本文首次将迁移学习应用于非人灵长类动物的脑提取,通过预训练的U-Net模型在多个研究站点数据上进行升级,提高了模型的泛化能力和准确性。 | 尽管模型在多个站点数据上表现良好,但仍需进一步验证其在更多种类非人灵长类动物和其他哺乳动物上的适用性。 | 提高非人灵长类动物脑提取的准确性和效率,并推广到其他哺乳动物。 | 非人灵长类动物的脑提取,以及通过迁移学习扩展到其他哺乳动物。 | 计算机视觉 | NA | 卷积神经网络 | U-Net | 图像 | 136只猕猴的数据集,以及来自多个研究站点的非人灵长类动物数据 |
17359 | 2024-08-07 |
FastSurfer - A fast and accurate deep learning based neuroimaging pipeline
2020-10-01, NeuroImage
IF:4.7Q1
DOI:10.1016/j.neuroimage.2020.117012
PMID:32526386
|
研究论文 | 本文提出了一种快速且准确的基于深度学习的大脑神经影像处理流程FastSurfer,用于自动化处理人脑结构MRI扫描,复制FreeSurfer的解剖学分割包括表面重建和皮质分区 | 引入了一种先进的深度学习架构,能够进行全脑95类分割,并采用了竞争密集块和竞争跳跃路径以及多切片信息聚合技术,专门针对皮质和皮质下结构的精确分割进行优化 | NA | 开发一种快速且准确的深度学习基础的神经影像处理流程,以适应大规模队列研究的需求 | 人脑结构MRI扫描的自动化处理 | 计算机视觉 | NA | 深度学习 | CNN | 图像 | 数千或数万个体 |
17360 | 2024-08-07 |
Development and validation of an interpretable deep learning framework for Alzheimer's disease classification
2020-06-01, Brain : a journal of neurology
IF:10.6Q1
DOI:10.1093/brain/awaa137
PMID:32357201
|
研究论文 | 本文开发并验证了一种可解释的深度学习框架,用于阿尔茨海默病的分类 | 该框架结合了全卷积网络和多层感知器,能够从多模态输入中识别出独特的阿尔茨海默病特征,并生成直观的个体风险可视化,其诊断性能超过了多机构团队的执业神经科医生 | NA | 开发一种可解释的深度学习框架,用于提高阿尔茨海默病的诊断准确性 | 阿尔茨海默病患者和认知正常的个体 | 机器学习 | 阿尔茨海默病 | MRI | 全卷积网络和多层感知器 | 图像 | 训练集包括417名临床诊断的阿尔茨海默病患者和认知正常个体,验证集包括AIBL(382名)、Framingham Heart Study(102名)和NACC(582名) |