本数据库通过收集和整理最新科研文献信息而得,供了解领域前沿进展之用。数据源自 PubMed Data ,每日自动更新(使用关键词“['deep learning']”过滤),已收录文献数量参见 统计表格。表格内容由 GPT 自动整理,可能存在错误或遗漏,请使用时务必注意核实!
如有建议或合作意向,欢迎联系 linlin.yan(AT)bioinfo.app 或 微信 yanlinlin82。本项目遵循 MIT 许可 发布,欢迎下载 源码 自行修改使用。如觉得不错,还请不吝 给我打赏,你的支持是我继续创新的重要动力!


除通过在线浏览外,为方便用户离线查阅,本站也提供 付费下载(定价19.9元)。之所以考虑收费,是因为批量扫描这些文献并整理也是有一定成本的,还请理解并多多支持。本站数据会持续更新,而仅需一次付费,未来就可以随时重新下载到最新版本数据。
| 序号 | 推送日期 | 文章 | 类型 | 简述 | 创新点 | 不足 | 研究目的 | 研究对象 | 领域 | 病种 | 技术 | 模型 | 数据类型 | 样本量 | 算法框架 | 模型架构 | 性能指标 | 计算资源 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 17481 | 2025-10-07 |
Goose multi-omics database: A comprehensive multi-omics database for goose genomics
2025-Jan-23, Poultry science
IF:3.8Q1
DOI:10.1016/j.psj.2025.104842
PMID:39874782
|
研究论文 | 介绍了一个整合鹅类多组学数据的综合数据库GMD | 首次建立了统一的鹅类多组学数据集成平台,提供一站式基因信息搜索、分析和可视化功能 | 未提及数据库当前覆盖的数据量范围和更新机制 | 构建鹅类多组学数据库以促进鹅基因组学研究 | 鹅类基因组数据和多组学信息 | 生物信息学 | NA | 多组学分析、基因组学 | NA | 基因组数据、基因表达数据、基因组变异数据 | NA | NA | NA | NA | NA |
| 17482 | 2025-10-07 |
Where, why, and how is bias learned in medical image analysis models? A study of bias encoding within convolutional networks using synthetic data
2025-Jan, EBioMedicine
IF:9.7Q1
DOI:10.1016/j.ebiom.2024.105501
PMID:39671751
|
研究论文 | 本研究通过合成脑磁共振成像数据系统性地分析了卷积神经网络中偏见的编码机制 | 首次系统研究医学图像分析模型中偏见编码的位置、原因和方式,使用已知疾病和偏见效应的合成数据进行客观分析 | 使用合成数据而非真实临床数据,可能无法完全反映真实世界的复杂性 | 理解深度学习模型在医学图像分析中算法偏见的编码机制 | 合成脑磁共振成像数据 | 医学图像分析 | 神经系统疾病 | 脑磁共振成像 | CNN | 医学图像 | NA | NA | 卷积神经网络 | NA | NA |
| 17483 | 2025-10-07 |
A step towards quantifying, modelling and exploring uncertainty in biomedical knowledge graphs
2025-Jan, Computers in biology and medicine
IF:7.0Q1
DOI:10.1016/j.compbiomed.2024.109355
PMID:39541901
|
研究论文 | 本研究提出使用深度学习技术基于文本支持证据自动量化和建模生物医学知识图谱中事实的不确定性 | 首次将句子转换器与朴素贝叶斯分类器结合用于生物医学知识图谱事实不确定性量化,并提出能够处理大规模知识图谱的KGB2U方法 | NA | 自动量化和建模生物医学知识图谱中事实的不确定性 | 生物医学知识图谱中的事实及其文本支持证据 | 自然语言处理 | NA | 深度学习 | 句子转换器, 朴素贝叶斯分类器 | 文本 | NA | NA | 句子转换器 | 分类性能 | NA |
| 17484 | 2025-02-14 |
Detection of Masses in Mammogram Images Based on the Enhanced RetinaNet Network With INbreast Dataset
2025, Journal of multidisciplinary healthcare
IF:2.7Q2
DOI:10.2147/JMDH.S493873
PMID:39935433
|
研究论文 | 本文提出了一种基于增强RetinaNet网络的乳腺X光图像肿块检测方法,旨在提高计算机辅助诊断的效率和准确性 | 在RetinaNet网络结构中引入ReLU函数处理特征图M5,以防止小肿块特征的分辨率损失,并采用迁移学习技术进行模型训练 | 研究仅基于INbreast数据集进行验证,未在其他数据集上测试模型的泛化能力 | 提高乳腺X光图像中肿块的检测准确率,减少假阳性和假阴性 | 乳腺X光图像中的肿块 | 计算机视觉 | 乳腺癌 | 深度学习 | RetinaNet | 图像 | INbreast数据集 | NA | NA | NA | NA |
| 17485 | 2025-02-14 |
Diagnosis of depression based on facial multimodal data
2025, Frontiers in psychiatry
IF:3.2Q2
DOI:10.3389/fpsyt.2025.1508772
PMID:39935533
|
研究论文 | 本研究提出了一种基于面部视频和音频数据的深度学习方法来自动诊断抑郁症 | 通过融合多模态数据,使用时空注意力模块增强视觉特征提取,并结合GCN和LSTM分析音频特征,有效捕捉与抑郁症相关的不同特征模式 | NA | 开发基于客观指标的自动诊断工具,以解决传统量表诊断方法的主观性强和误诊率高的问题 | 抑郁症患者 | 机器学习 | 抑郁症 | 深度学习 | GCN, LSTM | 面部视频, 音频数据 | 公开的临床数据集E-DAIC | NA | NA | NA | NA |
| 17486 | 2025-02-14 |
Mapping knowledge landscapes and emerging trends in artificial intelligence for antimicrobial resistance: bibliometric and visualization analysis
2025, Frontiers in medicine
IF:3.1Q1
DOI:10.3389/fmed.2025.1492709
PMID:39935800
|
研究论文 | 本文通过文献计量学分析,系统地绘制了人工智能在抗菌素耐药性研究中的应用知识图谱和发展趋势 | 整合了多种文献计量学方法,包括VOSviewer、CiteSpace和定量分析,以可视化合作网络和研究集群,并分析时间演变 | 数据来源仅限于Web of Science核心合集数据库,可能未涵盖所有相关研究 | 提供基于证据的见解,指导未来研究方向,并为这一动态领域的战略决策提供信息 | 2014年至2024年期间发表的关于人工智能在抗菌素耐药性研究中应用的出版物 | 机器学习 | 抗菌素耐药性 | 文献计量学分析、VOSviewer、CiteSpace | 人工神经网络、图神经网络 | 文献数据 | 2,408篇出版物 | NA | NA | NA | NA |
| 17487 | 2025-02-14 |
DPD-YOLO: dense pineapple fruit target detection algorithm in complex environments based on YOLOv8 combined with attention mechanism
2025, Frontiers in plant science
IF:4.1Q1
DOI:10.3389/fpls.2025.1523552
PMID:39935949
|
研究论文 | 本文提出了一种基于YOLOv8并结合注意力机制的DPD-YOLO算法,用于复杂环境下的菠萝果实目标检测 | DPD-YOLO算法引入了注意力机制(Coordinate Attention)和BiFPN(双向特征金字塔网络),并替换了YOLOv8的检测头为RT-DETR检测头,结合了Cross-Attention和Self-Attention机制,显著提高了模型在复杂背景和遮挡情况下的检测精度 | NA | 提高复杂环境下菠萝果实目标检测的准确性 | 菠萝果实 | 计算机视觉 | NA | NA | YOLOv8, DPD-YOLO, RT-DETR | 图像 | NA | NA | NA | NA | NA |
| 17488 | 2025-02-14 |
Dual-stream disentangled model for microvascular extraction in five datasets from multiple OCTA instruments
2025, Frontiers in medicine
IF:3.1Q1
DOI:10.3389/fmed.2025.1542737
PMID:39944497
|
研究论文 | 本文提出了一种新颖的双流解耦网络(D2Net),用于视网膜OCTA微血管分割,有效减少了不同成像仪器带来的噪声和伪影干扰 | 提出了一种双流编码器,分别学习图像伪影和潜在血管特征,通过引入血管结构作为先验约束和构建辅助信息,实现了解耦表示学习 | 尽管在多个数据集上验证了方法的鲁棒性和泛化能力,但仍需进一步验证其在更广泛临床环境中的适用性 | 提高视网膜OCTA微血管分割的准确性,减少噪声和伪影的干扰 | 视网膜OCTA图像中的微血管 | 计算机视觉 | 眼科疾病 | OCTA成像技术 | 双流解耦网络(D2Net) | 图像 | 五个数据集(包括FOCA、OCTA-500、ROSE-O、ROSE-Z和ROSE-H),数据来自不同仪器 | NA | NA | NA | NA |
| 17489 | 2025-02-14 |
Magnetic resonance imaging-based deep learning for predicting subtypes of glioma
2025, Frontiers in neurology
IF:2.7Q3
DOI:10.3389/fneur.2025.1518815
PMID:39944539
|
研究论文 | 本研究探讨了基于磁共振成像(MRI)的深度学习在胶质瘤亚型分类中的应用价值 | 开发了一套能够有效分类胶质瘤亚型的模型,并发现仅包含FLAIR序列的模型效果最佳 | 研究样本主要来自公开数据库和单一医院,可能存在样本选择偏差 | 探索基于MRI的深度学习在胶质瘤亚型分类中的应用 | 747名来自公开数据库和64名来自医院的经手术病理证实的胶质瘤成年患者 | 计算机视觉 | 胶质瘤 | 磁共振成像(MRI) | 深度学习 | 图像 | 811名患者(747名来自公开数据库,64名来自医院) | NA | NA | NA | NA |
| 17490 | 2025-02-14 |
Modeling dose uncertainty in cone-beam computed tomography: Predictive approach for deep learning-based synthetic computed tomography generation
2025-Jan, Physics and imaging in radiation oncology
DOI:10.1016/j.phro.2025.100704
PMID:39944778
|
研究论文 | 本研究提出了一种基于深度学习的合成CT生成方法,用于评估锥形束CT(CBCT)中的剂量不确定性 | 引入了与合成CT和CT之间误差相关的体素级不确定性估计器,并提出了一种通过定义CT剂量-体积直方图(DVH)周围的置信区间来估计剂量不确定性的新方法 | 研究样本主要来自单一中心的头颈部患者,且仅测试了少量来自其他中心的患者,可能限制了方法的普适性 | 提高CBCT在图像引导放疗中的剂量计算准确性 | 头颈部癌症患者 | 计算机视觉 | 头颈部癌症 | 深度学习 | NA | 医学影像 | 85名头颈部患者(主要来自单一中心),外加3名来自不同中心的患者 | NA | NA | NA | NA |
| 17491 | 2025-02-14 |
Association between the subclinical level of problematic internet use and habenula volume: a look at mediation effect of neuroticism
2025, General psychiatry
IF:5.3Q1
DOI:10.1136/gpsych-2024-101694
PMID:39944777
|
研究论文 | 本研究探讨了亚临床水平的问题性互联网使用(PIU)与缰核体积之间的关系,以及神经质在这一关系中的中介作用 | 首次揭示了缰核体积减少与PIU增加之间的关键联系,并发现神经质是PIU发展的关键风险因素,且在其中起中介作用 | 研究为横断面设计,无法确定因果关系;样本量相对较小 | 探讨亚临床PIU与缰核体积的关系及人格特质的中介作用 | 110名健康成年人 | 神经科学 | 精神疾病 | 结构磁共振成像,深度学习技术 | 深度学习 | 图像,问卷数据 | 110名健康成年人 | NA | NA | NA | NA |
| 17492 | 2025-02-14 |
Ontologies in modelling and analysing of big genetic data
2024-Dec, Vavilovskii zhurnal genetiki i selektsii
IF:0.9Q3
DOI:10.18699/vjgb-24-101
PMID:39944813
|
研究论文 | 本文探讨了基于本体论的新方法,用于系统化和有效利用生物信息学和生物医学领域积累的大量实验数据,包括自动化语义整合异构数据、创建大型知识库和基于深度学习的自解释方法 | 提出了基于本体论的深度学习方法,如Deep GONet和ONN4MST,这些方法不仅性能高,而且具有可解释性,解决了深度学习模型通常作为“黑箱”的问题 | 尽管提出了可解释的深度学习方法,但神经网络的复杂性和数据异质性仍然是挑战,且自动推理依赖于预先创建的参考本体 | 开发基于本体论的方法,以系统化和有效利用生物信息学和生物医学领域的大规模实验数据 | 生物信息学、系统生物学和生物医学领域的实验数据 | 生物信息学 | 癌症 | 深度学习、本体论、语义整合 | Deep GONet、ONN4MST | 基因数据、微生物数据 | 癌症诊断数据集、人类肠道微生物群落样本 | NA | NA | NA | NA |
| 17493 | 2025-10-07 |
Medical language model specialized in extracting cardiac knowledge
2024-11-23, Scientific reports
IF:3.8Q1
DOI:10.1038/s41598-024-80165-z
PMID:39580531
|
研究论文 | 本研究专注于构建专门用于心脏病学领域的医学语言模型 | 首次在医学领域内针对特定专科(心脏病学)构建专门化语言模型,而非将整个医学领域视为单一领域 | NA | 在医学领域的心脏病学专科内开发专门化的自然语言处理模型 | 心脏病学领域的医学文本数据 | 自然语言处理 | 心血管疾病 | Transformer | 语言模型 | 文本 | NA | NA | Transformer | NA | NA |
| 17494 | 2025-10-07 |
Drug Discovery in the Age of Artificial Intelligence: Transformative Target-Based Approaches
2024-Nov-14, International journal of molecular sciences
IF:4.9Q2
DOI:10.3390/ijms252212233
PMID:39596300
|
综述 | 本文探讨人工智能时代下机器学习在靶向药物发现中的革命性应用 | 系统阐述SMILES符号系统与机器学习结合如何变革先导化合物识别、高通量筛选和虚拟筛选流程 | 模型可解释性和数据质量仍是当前面临的主要挑战 | 研究机器学习如何加速靶向药物发现过程 | 小分子药物发现方法 | 自然语言处理, 机器学习 | NA | SMILES, 高通量筛选, 虚拟筛选 | CNN, RNN, GAN | 分子结构数据, 蛋白质结构数据 | NA | NA | 卷积神经网络, 循环神经网络, 生成对抗网络 | 结合亲和力预测准确度, 选择性预测准确度 | NA |
| 17495 | 2025-10-07 |
Deep learning prediction of curve severity from rasterstereographic back images in adolescent idiopathic scoliosis
2024-Nov, European spine journal : official publication of the European Spine Society, the European Spinal Deformity Society, and the European Section of the Cervical Spine Research Society
IF:2.6Q1
DOI:10.1007/s00586-023-08052-1
PMID:38055037
|
研究论文 | 本研究开发了一种基于卷积神经网络的深度学习模型,用于从青少年特发性脊柱侧凸患者的背部光栅立体图像直接预测Cobb角 | 首次使用深度学习模型直接从背部光栅立体图像预测Cobb角,无需脊柱形状重建 | 模型性能低于人工进行的放射学评估,无法作为临床有效的非侵入性替代方案 | 评估基于卷积神经网络的深度学习模型在预测青少年特发性脊柱侧凸Cobb角方面的有效性 | 青少年特发性脊柱侧凸患者 | 计算机视觉 | 脊柱侧凸 | 光栅立体成像 | CNN | 图像 | 900名个体(训练集720个样本,测试集180个样本) | NA | NA | 平均绝对误差, 相关系数, 均方根误差, 准确率 | NA |
| 17496 | 2025-10-07 |
Application of machine-learning model to optimize colonic adenoma detection in India
2024-10, Indian journal of gastroenterology : official journal of the Indian Society of Gastroenterology
IF:2.0Q3
DOI:10.1007/s12664-024-01530-4
PMID:38758433
|
研究论文 | 开发机器学习模型优化印度人群结肠腺瘤检测 | 首次在印度次大陆建立结肠腺瘤预测模型,采用梯度提升树模型并实现92.2%的AUC | 排除了结肠腺瘤高风险患者,研究人群存在选择性偏倚 | 优化结肠腺瘤检测以预防结直肠癌 | 接受诊断性结肠镜检查的成年患者 | 机器学习 | 结直肠癌 | 结肠镜检查 | 梯度提升机,深度学习,决策树,随机森林,逻辑回归 | 临床数据 | 10320名患者(平均年龄45.18±14.82岁,69%男性) | NA | 梯度提升树 | AUC | NA |
| 17497 | 2025-10-07 |
Deep-learning models for differentiation of xanthogranulomatous cholecystitis and gallbladder cancer on ultrasound
2024-08, Indian journal of gastroenterology : official journal of the Indian Society of Gastroenterology
IF:2.0Q3
DOI:10.1007/s12664-023-01483-0
PMID:38110782
|
研究论文 | 本研究利用深度学习模型在超声图像上区分黄色肉芽肿性胆囊炎和胆囊癌 | 首次将最先进的深度学习模型(GBCNet-CNN和RadFormer-Transformer)应用于超声图像中XGC和GBC的鉴别诊断 | 单中心研究,样本量有限(80例患者),缺乏外部验证 | 开发基于深度学习的超声图像分类模型,用于区分黄色肉芽肿性胆囊炎和胆囊癌 | 黄色肉芽肿性胆囊炎和胆囊癌患者的术前超声图像 | 计算机视觉 | 胆囊疾病 | 超声成像 | CNN, Transformer | 超声图像 | 80例患者(25例XGC,55例GBC) | NA | GBCNet, RadFormer, DenseNet-121, ViT, DeiT | 灵敏度, 特异度, AUC | NA |
| 17498 | 2025-10-07 |
Independent Associations of Aortic Calcification with Cirrhosis and Liver Related Mortality in Veterans with Chronic Liver Disease
2024-Jul, Digestive diseases and sciences
IF:2.5Q2
DOI:10.1007/s10620-024-08450-5
PMID:38653948
|
研究论文 | 本研究评估腹主动脉钙化与慢性肝病患者肝硬化发展和肝相关死亡率的独立关联 | 首次利用自动化深度学习方法量化腹主动脉钙化评分,并系统评估其与多种慢性肝病类型临床结局的关联 | 研究对象仅限于退伍军人群体,可能存在选择偏倚;样本来源单一 | 评估腹主动脉钙化与慢性肝病患者肝硬化发展、肝脏失代偿、肝相关死亡和总体死亡的关联 | 患有三种慢性肝病(非酒精性脂肪肝、丙型肝炎、酒精相关性肝病)的退伍军人 | 数字病理 | 肝硬化 | 腹部CT扫描 | 深度学习 | 医学影像 | 3604名退伍军人 | NA | NA | 风险比(HR), 置信区间(CI) | NA |
| 17499 | 2025-10-07 |
Unraveling trends in schistosomiasis: deep learning insights into national control programs in China
2024, Epidemiology and health
IF:2.2Q2
DOI:10.4178/epih.e2024039
PMID:38514196
|
研究论文 | 本研究使用深度学习模型分析中国血吸虫病控制项目的进展和时空变化趋势 | 提出基于分层积分差分方程框架的卷积神经网络模型(CNN-IDE)用于血吸虫病时空动态建模 | 研究仅基于安徽省的数据,可能无法完全代表其他地区的血吸虫病流行情况 | 评估中国国家血吸虫病控制项目的效果并预测疾病流行趋势 | 中国安徽省长江沿岸血吸虫病流行区的村级流行病学数据 | 机器学习 | 血吸虫病 | 横断面调查 | CNN | 寄生虫学数据,环境数据 | 1997-2015年安徽省村级调查数据 | NA | CNN-IDE | MSPE,CRPS | NA |
| 17500 | 2025-10-07 |
Deep Learning Estimation of 10-2 Visual Field Map Based on Macular Optical Coherence Tomography Angiography Measurements
2024-01, American journal of ophthalmology
IF:4.1Q1
DOI:10.1016/j.ajo.2023.09.014
PMID:37734638
|
研究论文 | 开发基于深度学习模型从黄斑OCTA血管密度测量估计中心视野的方法 | 首次使用深度学习模型从OCTA血管密度图像直接估计10-2视野图参数,相比传统线性回归模型显著提升预测精度 | 样本量相对有限(1051个样本),仅针对中心视野评估,未包含周边视野数据 | 开发能够从OCTA图像准确估计视野损失的深度学习模型 | 健康眼、青光眼疑似者和青光眼患者的10-2视野和OCTA配对数据 | 医学影像分析 | 青光眼 | 光学相干断层扫描血管成像(OCTA) | 深度学习模型 | 黄斑en face血管密度图像 | 1051个10-2视野OCTA配对样本(包含健康眼、青光眼疑似者和青光眼患者) | NA | NA | 平均绝对误差(MAE), R2(皮尔逊相关系数平方) | NA |