本数据库通过收集和整理最新科研文献信息而得,供了解领域前沿进展之用。数据源自 PubMed Data ,每日自动更新,已收录文献数量参见 统计表格。表格内容由 GPT 自动整理,可能存在错误或遗漏,请使用时务必注意核实!
如有建议或合作意向,欢迎联系 linlin.yan(AT)bioinfo.app 或 微信 yanlinlin82。本项目遵循 MIT 许可 发布,欢迎下载 源码 自行修改使用。如觉得不错,还请不吝 给我打赏,你的支持是我继续创新的重要动力!
除通过在线浏览外,为方便用户离线查阅,本站也提供 付费下载(定价10元)。之所以考虑收费,是因为批量扫描这些文献并整理也是有一定成本的,还请理解并多多支持。本站数据会持续更新,而仅需一次付费,未来就可以随时重新下载到最新版本数据。
序号 | 推送日期 | 文章 | 类型 | 简述 | 创新点 | 不足 | 研究目的 | 研究对象 | 领域 | 病种 | 技术 | 模型 | 数据类型 | 样本量 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
17621 | 2024-08-31 |
Gaussian Aquila optimizer based dual convolutional neural networks for identification and grading of osteoarthritis using knee joint images
2024-03-27, Scientific reports
IF:3.8Q1
DOI:10.1038/s41598-024-57002-4
PMID:38538646
|
研究论文 | 本研究利用基于高斯鹰优化器的双卷积神经网络对膝关节图像进行识别和分级,以诊断骨关节炎 | 提出了一种新的高斯鹰优化器(GAO),用于优化双卷积神经网络(DCNN)模型的参数,该模型通过减少层数来降低计算负担 | NA | 旨在通过早期检测骨关节炎并及时治疗,减轻患者的疼痛 | 骨关节炎患者的膝关节图像 | 计算机视觉 | 骨关节炎 | 卷积神经网络 | 双卷积神经网络 | 图像 | 总共2283张膝关节图像,其中1267张为正常膝关节图像,1016张为骨关节炎图像 |
17622 | 2024-08-31 |
Detecting abnormal cell behaviors from dry mass time series
2024-03-25, Scientific reports
IF:3.8Q1
DOI:10.1038/s41598-024-57684-w
PMID:38528035
|
研究论文 | 本文介绍了一种新的自监督学习模型StArDusTS,用于检测细胞群体中的异常行为,通过分析细胞随时间的干质量时间序列来实现 | 提出了一个新颖的自监督学习模型StArDusTS,用于自动检测细胞异常行为,无需预先标签 | NA | 开发一种能够预测单细胞病理变化的新型自监督学习模型 | 细胞群体中的异常行为检测 | 机器学习 | NA | 自监督学习 | StArDusTS | 时间序列 | 涉及不同细胞系 |
17623 | 2024-08-31 |
PlaqueNet: deep learning enabled coronary artery plaque segmentation from coronary computed tomography angiography
2024-Mar-22, Visual computing for industry, biomedicine, and art
DOI:10.1186/s42492-024-00157-8
PMID:38514491
|
研究论文 | 本文介绍了一种名为PlaqueNet的深度学习方法,用于从冠状动脉CT血管造影图像中分割冠状动脉斑块 | 采用了先进的残差网络模块和深度可分离空洞空间金字塔池化结合双三次高效通道注意力(DASPP-BICECA)模块,提高了特征提取能力和分割准确性 | NA | 旨在通过深度学习技术提高冠状动脉斑块的检测准确性,以支持早期治疗和降低心血管疾病风险 | 冠状动脉斑块的分割 | 计算机视觉 | 心血管疾病 | 冠状动脉CT血管造影(CCTA) | CNN | 图像 | 未具体说明样本数量 |
17624 | 2024-08-31 |
Network depth affects inference of gene sets from bacterial transcriptomes using denoising autoencoders
2024, Bioinformatics advances
IF:2.4Q2
DOI:10.1093/bioadv/vbae066
PMID:39027639
|
研究论文 | 研究使用深度去噪自编码器(DAEs)从细菌转录组数据中推断基因集,并探讨网络架构对基因集推断的影响 | 将去噪自编码器的应用扩展到深度网络,并研究网络深度和宽度对基因集推断的影响 | 需要进一步验证和优化深度去噪自编码器在不同细菌数据集上的应用 | 开发一种基于深度去噪自编码器的管道,用于从转录组数据中提取基因集,并评估网络架构对基因集推断的影响 | 大肠杆菌的转录组数据和独立尿路致病性大肠杆菌数据集 | 机器学习 | NA | 去噪自编码器(DAEs) | DAE | 转录组数据 | 多个公开可用的细菌基因表达数据集 |
17625 | 2024-08-31 |
Interpolation-split: a data-centric deep learning approach with big interpolated data to boost airway segmentation performance
2024, Journal of big data
IF:8.6Q1
DOI:10.1186/s40537-024-00974-x
PMID:39109339
|
研究论文 | 本文提出了一种基于大数据插值的深度学习方法——插值分割(Interpolation-Split),用于提升气道分割性能 | 该方法通过插值和图像分割提高数据的有用性和质量,并采用集成学习策略聚合不同尺度的气道段,实现了高效的气道树分割 | NA | 旨在提高气道树分割的性能 | 气道树的形态和分布异常 | 计算机视觉 | 慢性呼吸系统疾病 | 深度学习 | 集成学习 | 图像 | NA |
17626 | 2024-08-31 |
Deep learning pipeline reveals key moments in human embryonic development predictive of live birth after in vitro fertilization
2024, Biology methods & protocols
IF:2.5Q3
DOI:10.1093/biomethods/bpae052
PMID:39114746
|
研究论文 | 本文应用卷积神经网络(CNN)来识别与胚胎存活能力相关的人类胚胎发育关键窗口,以改进体外受精(IVF)胚胎的早期分级 | 利用迁移学习的优势,展示了CNN模型在小数据集上的性能,为临床个性化应用铺平道路 | NA | 提高体外受精治疗的成功率 | 人类胚胎发育的关键时刻及其与胚胎存活能力的关联 | 机器学习 | NA | 卷积神经网络(CNN) | CNN | 图像 | 数据集非常有限 |
17627 | 2024-08-31 |
Rapid prediction of wall shear stress in stenosed coronary arteries based on deep learning
2024, Frontiers in bioengineering and biotechnology
IF:4.3Q2
DOI:10.3389/fbioe.2024.1360330
PMID:39188371
|
研究论文 | 本文利用深度学习技术,通过结合合成数据和真实患者数据,训练了一个U-net架构的模型,用于快速预测狭窄冠状动脉的壁剪应力 | 本文采用了两种合成数据生成方法,并将其与真实患者数据结合,提高了模型的训练效果 | 文章中使用的患者数据有限,主要依赖于合成数据 | 开发一种快速且高效的深度学习模型,用于临床实践中预测冠状动脉的壁剪应力 | 狭窄冠状动脉的壁剪应力 | 机器学习 | 心血管疾病 | 深度学习 | U-net | 图像 | 患者数据有限,主要使用合成数据 |
17628 | 2024-08-31 |
A new method of rock type identification based on transformer by utilizing acoustic emission
2024, PloS one
IF:2.9Q1
DOI:10.1371/journal.pone.0309165
PMID:39190747
|
研究论文 | 本文提出了一种基于声发射信号和3CTNet模型的新型岩石类型识别框架,该模型结合了卷积神经网络和Transformer编码器,用于智能识别不同岩石断裂的声发射信号 | 引入了一种新的信号识别模型3CTNet,该模型通过建立数据中相邻位置的依赖关系并逐步提取高级特征,提高了岩石类型识别的准确性 | NA | 解决传统分析方法在处理大数据时的不足,提高岩石类型识别的效率和准确性 | 岩石类型的识别 | 地球科学 | NA | 声发射信号处理 | 3CTNet(CNN与Transformer的结合) | 声发射信号 | NA |
17629 | 2024-08-31 |
CSAM: A 2.5D Cross-Slice Attention Module for Anisotropic Volumetric Medical Image Segmentation
2024-Jan, IEEE Winter Conference on Applications of Computer Vision. IEEE Winter Conference on Applications of Computer Vision
DOI:10.1109/wacv57701.2024.00582
PMID:39193208
|
研究论文 | 本文提出了一种2.5D交叉切片注意力模块(CSAM),用于各向异性体积医学图像分割 | CSAM通过在不同尺度的深度特征图上应用语义、位置和切片注意力,以最少的可训练参数捕获整个体积中的切片间信息 | NA | 解决各向异性体积医学数据分割中的问题,特别是磁共振成像(MRI)数据 | 各向异性体积医学图像 | 计算机视觉 | NA | 深度学习 | CNN | 图像 | NA |
17630 | 2024-08-31 |
Evaluation of the Artificial Intelligence Chatbot on Breast Reconstruction and Its Efficacy in Surgical Research: A Case Study
2023-12, Aesthetic plastic surgery
IF:2.0Q2
DOI:10.1007/s00266-023-03443-7
PMID:37314466
|
研究论文 | 本研究评估了人工智能聊天机器人ChatGPT在乳房重建领域的应用及其在整形外科研究中的效果 | 首次评估ChatGPT在整形外科研究中的准确性和全面性 | ChatGPT在回答中缺乏深度,生成不存在的参考文献,引用错误的期刊和日期,存在学术诚信问题 | 评估ChatGPT在整形外科研究中的适用性 | ChatGPT在乳房重建领域的应用 | 机器学习 | NA | 深度学习 | NA | 文本 | 6个问题 |
17631 | 2024-08-31 |
Association Between Fat Depletion and Prognosis of Amyotrophic Lateral Sclerosis: CT-Based Body Composition Analysis
2023-12, Annals of neurology
IF:8.1Q1
DOI:10.1002/ana.26775
PMID:37612833
|
研究论文 | 本研究探讨了脂肪减少与肌萎缩侧索硬化症(ALS)患者预后的关系,使用基于深度学习的CT体成分分析软件进行分析 | 首次使用深度学习技术进行CT体成分分析,评估脂肪减少和肌肉减少对ALS患者生存的影响 | 研究为回顾性分析,样本量相对较小,且仅在单一医院进行 | 评估脂肪减少和肌肉减少对ALS患者预后的影响 | 肌萎缩侧索硬化症患者 | 数字病理学 | 神经退行性疾病 | CT | 深度学习 | 图像 | 80名患者(40名男性,平均年龄65.5±9.4岁) |
17632 | 2024-08-31 |
A high-resolution canopy height model of the Earth
2023-Nov, Nature ecology & evolution
IF:13.9Q1
DOI:10.1038/s41559-023-02206-6
PMID:37770546
|
研究论文 | 本文介绍了一种全球冠层高度图,分辨率为10米,基于融合了GEDI LiDAR数据和Sentinel-2卫星图像的深度学习模型 | 开发了一种概率深度学习模型,能够从Sentinel-2图像中检索冠层顶部高度并量化估计的不确定性 | NA | 提供高分辨率的全球冠层高度模型,以支持生态系统管理、气候变化缓解和生物多样性保护 | 全球冠层高度及其在生态系统中的分布 | 计算机视觉 | NA | 深度学习 | 深度学习模型 | 图像 | 全球陆地面积的5%被超过30米的树木覆盖 |
17633 | 2024-08-31 |
Comparison of Machine Learning Detection of Low Left Ventricular Ejection Fraction Using Individual ECG Leads
2023-Oct, Computing in cardiology
DOI:10.22489/cinc.2023.047
PMID:39193485
|
研究论文 | 本研究开发并应用了一种深度学习架构,用于检测低左心室射血分数(LVEF),并比较了使用单个导联和整个12导联ECG训练该架构的性能 | 探索了使用单个导联ECG数据进行机器学习分析的可能性,并发现单导联训练的网络与全12导联训练的网络性能相似 | 未提及具体限制 | 开发和比较使用单个导联和整个12导联ECG进行机器学习分析的性能 | 低左心室射血分数(LVEF)的检测 | 机器学习 | 心血管疾病 | 机器学习(ML) | 深度学习 | ECG数据 | 未提及具体样本数量 |
17634 | 2024-08-31 |
Antigen-specific CD4+ T cells exhibit distinct transcriptional phenotypes in the lymph node and blood following vaccination in humans
2023-Sep-15, Research square
DOI:10.21203/rs.3.rs-3304466/v1
PMID:37790414
|
研究论文 | 研究评估了BNT162b2 mRNA疫苗接种后,人类血液和引流淋巴结中针对SARS-CoV-2刺突蛋白的CD4 T细胞的单细胞转录组特征 | 使用新的深度学习方法Trex进行反向表位映射,结合单细胞TCR测序和转录组学来预测抗原特异性 | NA | 探讨SARS-CoV-2感染和mRNA疫苗接种后CD4 T细胞的转录组特征 | 人类血液和引流淋巴结中的刺突特异性CD4 T细胞 | 免疫学 | NA | 单细胞转录组学 | 深度学习 | 转录组数据 | 多个刺突特异性CD4 T细胞克隆型 |
17635 | 2024-08-31 |
Deep learning-assisted diagnosis of benign and malignant parotid tumors based on contrast-enhanced CT: a multicenter study
2023-Sep, European radiology
IF:4.7Q1
DOI:10.1007/s00330-023-09568-2
PMID:37067576
|
研究论文 | 本研究开发了基于CT图像的深度学习辅助诊断模型,以帮助放射科医生区分良性和恶性腮腺肿瘤 | 开发的深度学习模型在预测良性和恶性腮腺肿瘤方面优于传统的支持向量机模型 | NA | 开发深度学习辅助诊断模型,以提高放射科医生对腮腺肿瘤的诊断性能 | 良性和恶性腮腺肿瘤的诊断 | 机器学习 | 腮腺肿瘤 | 深度学习 | CNN | 图像 | 573名经组织病理学确认的腮腺肿瘤患者 |
17636 | 2024-08-31 |
Brain Lesion Synthesis via Progressive Adversarial Variational Auto-Encoder
2022-Sep-21, Simulation and synthesis in medical imaging : ... International Workshop, SASHIMI ..., held in conjunction with MICCAI ..., proceedings. SASHIMI (Workshop)
DOI:10.1007/978-3-031-16980-9_10
PMID:39026926
|
研究论文 | 本文提出了一种渐进式对抗变分自编码器(PAVAE)框架,用于合成脑部病变图像,以扩充训练数据集,提高分割任务的性能 | 设计了条件嵌入块(CEB)和掩码嵌入块(MEB),将掩码的固有条件编码到特征空间,以更好地利用外部信息提供额外的网络训练监督 | NA | 开发一种新的方法来合成脑部病变图像,以支持激光间质热疗(LITT)治疗后的区域兴趣(ROI)分割 | 脑部病变图像的合成与分割 | 计算机视觉 | 颞叶内侧癫痫 | 卷积神经网络(CNN) | 对抗变分自编码器(VAE) | 图像 | 具体样本数量未提及 |
17637 | 2024-08-31 |
Protocol for live cell image segmentation to profile cellular morphodynamics using MARS-Net
2022-09-16, STAR protocols
IF:1.3Q4
DOI:10.1016/j.xpro.2022.101469
PMID:35733606
|
研究论文 | 本文介绍了使用MARS-Net深度学习模型进行活细胞图像分割以分析细胞形态动力学的协议 | 开发了MARS-Net模型,该模型集成了ImageNet预训练的VGG19编码器和U-Net解码器,用于处理多种显微镜图像数据 | NA | 旨在解决荧光和相衬成像技术在活细胞图像中准确边缘定位的挑战 | 活细胞图像中的细胞分割 | 计算机视觉 | NA | 深度学习 | MARS-Net | 图像 | 多种类型的显微镜图像数据 |
17638 | 2024-08-31 |
Hierarchical deep learning of multiscale differential equation time-steppers
2022-Aug-08, Philosophical transactions. Series A, Mathematical, physical, and engineering sciences
DOI:10.1098/rsta.2021.0200
PMID:35719073
|
研究论文 | 本文开发了一种分层的深度神经网络时间步进算法,用于在多时间尺度上近似动态系统的流图 | 提出的分层时间步进方案在捕捉多时间尺度、提高准确性、长期预测效率和灵活性方面优于现有算法 | NA | 开发一种高效且准确的数据驱动方法,用于在多时间尺度上近似非线性动态系统的解 | 非线性动态系统,包括Van der Pol振荡器、Lorenz系统、Kuramoto-Sivashinsky方程和流体通过圆柱体流动;音频和视频信号 | 机器学习 | NA | 深度神经网络 | 深度神经网络 | 序列数据 | 涉及多种非线性动态系统和信号类型 |
17639 | 2024-08-31 |
VALIDATION OF A DEEP LEARNING-BASED ALGORITHM FOR SEGMENTATION OF THE ELLIPSOID ZONE ON OPTICAL COHERENCE TOMOGRAPHY IMAGES OF AN USH2A-RELATED RETINAL DEGENERATION CLINICAL TRIAL
2022-07-01, Retina (Philadelphia, Pa.)
DOI:10.1097/IAE.0000000000003448
PMID:35174801
|
研究论文 | 本文评估了一种基于深度学习的算法对椭圆带(EZ)在光学相干断层扫描(OCT)图像上分割的泛化能力 | 使用深度OCT萎缩检测算法,该算法最初为黄斑毛细血管扩张症2型开发,现应用于USH2A相关视网膜变性临床试验中 | NA | 评估基于深度学习的算法在不同疾病和生物标志物中的应用潜力 | USH2A相关视网膜变性患者的OCT图像中的椭圆带(EZ) | 计算机视觉 | 视网膜疾病 | 深度学习 | CNN | 图像 | 127个频域光学相干断层扫描体积 |
17640 | 2024-08-31 |
Splice-site identification for exon prediction using bidirectional LSTM-RNN approach
2022-Jul, Biochemistry and biophysics reports
IF:2.3Q3
DOI:10.1016/j.bbrep.2022.101285
PMID:35663929
|
研究论文 | 本文提出了一种基于双向长短期记忆(LSTM)循环神经网络(RNN)的深度学习模型,用于识别和预测真核生物DNA序列中的剪接位点,从而预测外显子 | 使用双向LSTM-RNN模型来提高剪接位点识别的准确性,并通过增加训练周期来改进模型 | NA | 提高DNA序列中剪接位点识别和外显子预测的准确性 | 真核生物DNA序列中的剪接位点和外显子 | 机器学习 | NA | NA | 双向LSTM-RNN | DNA序列 | NA |