深度学习在生物医药领域中的应用

本数据库通过收集和整理最新科研文献信息而得,供了解领域前沿进展之用。数据源自 PubMed Data ,每日自动更新,已收录文献数量参见 统计表格。表格内容由 GPT 自动整理,可能存在错误或遗漏,请使用时务必注意核实!

如有建议或合作意向,欢迎联系 linlin.yan(AT)bioinfo.app 或 微信 yanlinlin82。本项目遵循 MIT 许可 发布,欢迎下载 源码 自行修改使用。如觉得不错,还请不吝 给我打赏,你的支持是我继续创新的重要动力!

Sample Image
添加微信请说明来意
Sample Image
微信赞赏

除通过在线浏览外,为方便用户离线查阅,本站也提供 付费下载(定价10元)。之所以考虑收费,是因为批量扫描这些文献并整理也是有一定成本的,还请理解并多多支持。本站数据会持续更新,而仅需一次付费,未来就可以随时重新下载到最新版本数据。

当前筛选条件: [分区不过滤] [IF不过滤] [发表日期不过滤] [清除筛选条件]
当前共找到 24409 篇文献,本页显示第 17781 - 17800 篇。
序号 推送日期 文章 类型 简述 创新点 不足 研究目的 研究对象 领域 病种 技术 模型 数据类型 样本量
17781 2024-09-05
CapsRule: Explainable Deep Learning for Classifying Network Attacks
2024-Sep, IEEE transactions on neural networks and learning systems IF:10.2Q1
研究论文 提出了一种名为CapsRule的有效且高效的基于规则的深度学习解释方法,用于分类网络攻击 CapsRule通过提取高保真规则来解释输入样本如何被分类,并使用预计算的耦合系数在训练阶段重叠规则提取过程以提高效率 NA 开发一种能够提高深度学习模型透明度和效率的规则提取方法,以应用于网络攻击分类 网络攻击分类 机器学习 NA 深度学习 胶囊网络 数据集 超过一百万的先进分布式拒绝服务(DDoS)攻击
17782 2024-09-05
Reducing Urban Traffic Congestion Using Deep Learning and Model Predictive Control
2024-Sep, IEEE transactions on neural networks and learning systems IF:10.2Q1
研究论文 本文提出了一种基于深度学习(DL)的控制算法——基于速度的模型预测控制(VMPC),用于减少城市交通拥堵,特别是针对缓慢时变交通信号控制的情况 该算法结合了深度学习进行系统识别和模型预测控制进行交通信号控制,并引入了基于建模误差熵损失的训练标准,灵感来源于随机分布控制理论 NA 旨在减少城市交通拥堵 城市交通拥堵及交通信号控制 机器学习 NA 深度学习(DL)和模型预测控制(VMPC) 深度学习模型 交通信号控制数据 NA
17783 2024-09-05
Template-Based Contrastive Distillation Pretraining for Math Word Problem Solving
2024-Sep, IEEE transactions on neural networks and learning systems IF:10.2Q1
研究论文 提出了一种基于预训练语言模型的模板对比蒸馏预训练方法(TCDP),用于数学应用题求解,通过多视角对比学习融入数学逻辑知识,并通过知识蒸馏保留丰富的现实世界知识和高品质的语义表示 通过模板对比学习和知识蒸馏,将数学逻辑知识和现实世界知识融入预训练语言模型中,提高了数学应用题求解的能力 NA 提高数学应用题求解的准确性和理解能力 数学应用题求解任务 自然语言处理 NA 预训练语言模型 PLM-based encoder 文本 涉及两个广泛采用的基准数据集Math23K和CM17K
17784 2024-09-05
Unsupervised Deep Tensor Network for Hyperspectral-Multispectral Image Fusion
2024-Sep, IEEE transactions on neural networks and learning systems IF:10.2Q1
研究论文 本文提出了一种无监督深度张量网络(UDTN),用于融合低分辨率高光谱图像(HSI)和高分辨率多光谱图像(MSI),以提高HSI的分辨率 本文将张量理论与深度学习相结合,提出了一种新的无监督学习方法,通过联合表示HSI和MSI的主要成分和共享编码张量,实现了对多维特征的有效处理 NA 研究目的是提高高光谱图像的分辨率 研究对象是低分辨率高光谱图像和高分辨率多光谱图像 计算机视觉 NA 深度学习 张量网络 图像 使用了模拟和真实遥感数据集进行实验
17785 2024-09-05
A Broad Generative Network for Two-Stage Image Outpainting
2024-Sep, IEEE transactions on neural networks and learning systems IF:10.2Q1
研究论文 本文提出了一种用于两阶段图像外推的广义生成网络(BG-Net),通过使用岭回归优化快速训练第一阶段的重建网络,并在第二阶段设计接缝线鉴别器(SLD)进行过渡平滑,显著提高了图像质量。 提出的BG-Net在训练速度上比基于深度学习的网络更快,减少了整体训练时间,并展示了强大的关联绘图能力。 NA 开发一种高效的两阶段图像外推方法,以提高图像处理的效率和质量。 图像外推技术及其在图像处理中的应用。 计算机视觉 NA NA 广义生成网络(BG-Net) 图像 使用了Wiki-Art和Place365数据集进行实验。
17786 2024-09-05
Motif-Based Contrastive Learning for Community Detection
2024-Sep, IEEE transactions on neural networks and learning systems IF:10.2Q1
研究论文 本文提出了一种基于模体的对比学习框架MotifCC,用于社区检测,通过融合高阶和低阶结构信息来提高检测效果 MotifCC框架通过构建基于模体的高阶网络并应用对比学习方法,有效融合了节点、边以及高阶和低阶结构信息,从而捕捉复杂的非线性关系 NA 改进复杂网络分析中的社区检测方法 复杂网络中的社区结构 机器学习 NA 对比学习 深度学习框架 网络数据 使用真实世界数据集进行广泛实验
17787 2024-09-05
Application of deep-learning to the automatic segmentation and classification of lateral lymph nodes on ultrasound images of papillary thyroid carcinoma
2024-Sep, Asian journal of surgery IF:3.5Q1
研究论文 本研究开发了深度学习模型,用于自动分割和分类超声图像中的甲状腺癌侧颈淋巴结 使用三种实例分割模型(MaskRCNN, SOLO 和 Mask2Former)进行像素级的对象识别,以实现对侧颈淋巴结的自动分割和分类 NA 旨在开发深度学习模型,用于自动分割和分类甲状腺癌患者的侧颈淋巴结转移 甲状腺癌患者的侧颈淋巴结超声图像 计算机视觉 甲状腺癌 深度学习 MaskRCNN, SOLO, Mask2Former 图像 1000张侧颈淋巴结超声图像,来自728名患者
17788 2024-09-05
Permutation Equivariant Graph Framelets for Heterophilous Graph Learning
2024-Sep, IEEE transactions on neural networks and learning systems IF:10.2Q1
研究论文 本文开发了一种新的多尺度提取方法,通过构建具有置换等变性、高效性和稀疏性的Haar型图框架,用于图上的深度学习任务,并设计了一种基于这些图框架的图框架神经网络模型PEGFAN。 提出了具有置换等变性、高效性和稀疏性的Haar型图框架,并设计了基于这些框架的图框架神经网络模型PEGFAN。 NA 开发适用于异质图学习的多尺度提取方法,并设计相应的神经网络模型。 异质图及其在深度学习任务中的应用。 机器学习 NA 图神经网络 (GNN) 图框架神经网络模型 (PEGFAN) 图数据 合成数据集和九个基准数据集
17789 2024-09-05
Deep Learning for Dynamic Graphs: Models and Benchmarks
2024-Sep, IEEE transactions on neural networks and learning systems IF:10.2Q1
研究论文 本文探讨了深度图网络在动态图上的应用,并进行了模型性能比较 提供了动态图表示学习的全面概述,并建立了评估新架构和方法的基准 NA 促进动态图领域的研究 动态图上的预测任务 机器学习 NA 深度图网络(DGNs) NA 图数据 NA
17790 2024-09-05
Deep learning approach for dysphagia detection by syllable-based speech analysis with daily conversations
2024-08-31, Scientific reports IF:3.8Q1
研究论文 本研究评估了一种新开发的深度学习模型,该模型通过分析基于音节的日常对话数据来诊断吞咽困难 本研究首次采用基于音节的数据分析方法来诊断吞咽困难 NA 评估深度学习模型在日常环境中早期、非侵入性和简单地检测吞咽困难的有效性 吞咽困难患者和对照组 机器学习 老年疾病 深度学习 卷积神经网络 音频 16名吞咽困难患者和24名对照组
17791 2024-09-05
Leveraging electrocardiography signals for deep learning-driven cardiovascular disease classification model
2024-Aug-30, Heliyon IF:3.4Q1
研究论文 本研究介绍了一种基于深度学习的自动化心电图信号识别技术(ADL-ECGSR),用于心血管疾病的检测和分类 该技术采用双向长短期记忆网络(BiLSTM)进行特征提取,并结合Adamax优化器和龙fly算法(DFA)与堆叠稀疏自编码器(SSAE)模块进行信号识别和分类 文章未提及具体限制 开发一种高效的自动化心电图信号识别技术,以提高心血管疾病的诊断准确性 心电图信号及其在心血管疾病分类中的应用 机器学习 心血管疾病 深度学习 BiLSTM 心电图信号 使用PTB-XL数据集进行模拟验证
17792 2024-09-05
The analysis of teaching quality evaluation for the college sports dance by convolutional neural network model and deep learning
2024-Aug-30, Heliyon IF:3.4Q1
研究论文 本研究利用卷积神经网络(CNN)模型和深度学习方法,全面分析和评估大学体育舞蹈教学质量 引入基于一维CNN的教学质量评估(TQE)模型,创新性地应用深度学习技术量化评估体育舞蹈教育质量 NA 旨在通过多维评估体系和1D-CNN模型的应用,全面评估大学体育舞蹈教育质量 大学体育舞蹈教学质量 机器学习 NA 卷积神经网络(CNN) CNN 一维评估数据 24个评估指标
17793 2024-09-05
Deep learning artificial neural network framework to optimize the adsorption capacity of 3-nitrophenol using carbonaceous material obtained from biomass waste
2024-08-30, Scientific reports IF:3.8Q1
研究论文 本研究利用从农业废弃物中提取的碳质材料,通过人工神经网络和遗传算法优化吸附过程,以提高3-硝基苯酚的吸附能力。 本研究创新性地使用Haematoxylum campechianum树皮和椰壳(墨西哥坎佩切丰富的农业废弃物)进行毒素去除,并通过人工神经网络和遗传算法优化吸附条件,提高吸附效率。 NA 研究旨在通过深度学习优化吸附过程,提高碳质材料对3-硝基苯酚的吸附能力。 研究对象包括碳质材料(CM-HC)、3-硝基苯酚、人工神经网络和遗传算法。 环境科学 NA 扫描电子显微镜(SEM/EDS)、BET方法、X射线粉末衍射(XRD)、人工神经网络(ANNs)、遗传算法 人工神经网络(ANNs) 实验数据 吸附剂用量2-10 g/L,温度300.15-330.15 K,pH值3-8
17794 2024-09-05
Character recognition system for pegon typed manuscript
2024-Aug-30, Heliyon IF:3.4Q1
研究论文 研究针对Pegon打印手稿的光学字符识别系统 首次探索了Pegon打印手稿的光学字符识别,并引入了新的合成和真实标注数据集 NA 开发和评估Pegon打印手稿的光学字符识别系统 Pegon打印手稿 计算机视觉 NA OCR (光学字符识别) YOLOv5, CTC-CRNN 文本 合成和真实标注的Pegon打印手稿数据集
17795 2024-09-05
[Early classification and recognition algorithm for sudden cardiac arrest based on limited electrocardiogram data trained with a two-stages convolutional neural network]
2024-Aug-25, Sheng wu yi xue gong cheng xue za zhi = Journal of biomedical engineering = Shengwu yixue gongchengxue zazhi
research paper 本文提出了一种基于深度迁移学习的SCA早期预测与分类算法,利用有限的心电图数据,通过两阶段卷积神经网络模型进行预训练和微调,实现对SCA高风险心电信号的早期分类、识别和预测。 本文提出的方法通过深度迁移学习,解决了深度学习模型对大量训练数据的需求,实现了在有限数据下对SCA高风险信号的早期准确检测和识别。 NA 研究目的是开发一种能够在有限心电图数据下早期预测和分类突发心脏骤停(SCA)的算法。 研究对象是突发心脏骤停患者和窦性心律患者的心电图数据。 machine learning cardiovascular disease 卷积神经网络 CNN 心电图数据 20名SCA患者和18名窦性心律患者的心电图数据,共16788个30秒的心率特征片段
17796 2024-09-05
[Detection model of atrial fibrillation based on multi-branch and multi-scale convolutional networks]
2024-Aug-25, Sheng wu yi xue gong cheng xue za zhi = Journal of biomedical engineering = Shengwu yixue gongchengxue zazhi
研究论文 本文设计了一种基于Inception模块的心房颤动(AF)检测模型,通过构建多分支检测通道处理AF期间的原始ECG信号、梯度信号和频率信号 与仅使用RR间期和心率变异性特征的现有机器学习算法相比,该算法额外采用了频率特征,更充分地利用了信号中的信息 NA 旨在早期检测心房颤动(AF),提高诊断效率 心房颤动(AF)的早期检测 计算机视觉 心血管疾病 多分支和多尺度卷积网络 CNN 信号 在MIT-BIH AF数据库上测试,检测准确率为96.89%,敏感性为97.72%,特异性为95.88%
17797 2024-09-05
[A lightweight recurrence prediction model for high grade serous ovarian cancer based on hierarchical transformer fusion metadata]
2024-Aug-25, Sheng wu yi xue gong cheng xue za zhi = Journal of biomedical engineering = Shengwu yixue gongchengxue zazhi
研究论文 本文提出了一种新的轻量级深度学习算法模型,用于预测高级别浆液性卵巢癌的复发 模型采用Ghost卷积(Ghost Conv)和坐标注意力(CA)建立Ghost计数器残差(SCblock)模块提取图像的局部特征信息,并通过分层融合Transformer(STblock)模块捕获全局信息和整合多层次信息,增强了不同层之间的交互 NA 提高高级别浆液性卵巢癌复发预测的准确性和效率 高级别浆液性卵巢癌的复发预测 机器学习 卵巢癌 Ghost卷积(Ghost Conv)、坐标注意力(CA)、分层融合Transformer(STblock) Transformer 图像 NA
17798 2024-09-05
[Study on automatic and rapid diagnosis of distal radius fracture by X-ray]
2024-Aug-25, Sheng wu yi xue gong cheng xue za zhi = Journal of biomedical engineering = Shengwu yixue gongchengxue zazhi
research paper 本文结合深度学习与图像分析技术,提出了一种有效的桡骨远端骨折类型分类方法 使用扩展的U-Net三层级联分割网络进行精确分割,并通过分别对关节面区域和非关节面区域图像进行分类训练,以区分骨折类型 NA 开发一种自动且快速的桡骨远端骨折诊断方法 桡骨远端骨折的自动诊断 computer vision NA NA U-Net image 测试集上的准确率分别为正常0.99,A型0.92,B型0.91,C型0.82
17799 2024-09-05
Delineating yeast cleavage and polyadenylation signals using deep learning
2024-Aug-20, Genome research IF:6.2Q1
研究论文 本文利用深度学习模型解析酵母中3'-端切割和多聚腺苷酸化信号的退化调控元件及其在介导多聚(A)位点形成、切割异质性和强度中的位置重要性 开发了深度学习模型来揭示酵母多聚(A)位点的独特基序配置,并提供了对酵母多聚(A)位点形成的深入见解 NA 解决酵母中多聚腺苷酸化信号的退化调控元件的特征问题 酵母中的多聚腺苷酸化信号及其调控元件 机器学习 NA 深度学习 深度学习模型 序列数据 未明确提及样本数量
17800 2024-09-05
The Artificial Intelligence-Powered New Era in Pharmaceutical Research and Development: A Review
2024-Aug-15, AAPS PharmSciTech IF:3.4Q2
综述 本文综述了人工智能(AI)、机器学习(ML)和深度学习(DL)在制药研究和开发领域的应用 这些计算技术通过先进的建模技术提高了效率和准确性,能够处理复杂数据并在几分钟内促进新发现 NA 探讨AI在制药研究和开发中的应用现状及其在未来研究和制药工业4.0和5.0时代中的潜在作用 AI、ML和DL在制药研究开发中的应用,包括药物发现、个性化医疗、药物配方优化等 机器学习 NA AI、ML、DL NA 复杂数据集 NA
回到顶部