深度学习在生物医药领域的应用

本数据库通过收集和整理最新科研文献信息而得,供了解领域前沿进展之用。数据源自 PubMed Data ,每日自动更新(使用关键词“['deep learning']”过滤),已收录文献数量参见 统计表格。表格内容由 GPT 自动整理,可能存在错误或遗漏,请使用时务必注意核实!

如有建议或合作意向,欢迎联系 linlin.yan(AT)bioinfo.app 或 微信 yanlinlin82。本项目遵循 MIT 许可 发布,欢迎下载 源码 自行修改使用。如觉得不错,还请不吝 给我打赏,你的支持是我继续创新的重要动力!

Sample Image
添加微信请说明来意
Sample Image
微信赞赏

除通过在线浏览外,为方便用户离线查阅,本站也提供 付费下载(定价19.9元)。之所以考虑收费,是因为批量扫描这些文献并整理也是有一定成本的,还请理解并多多支持。本站数据会持续更新,而仅需一次付费,未来就可以随时重新下载到最新版本数据。

当前筛选条件: [分区不过滤] [IF不过滤] [发表日期不过滤] [清除筛选条件]
当前共找到 32939 篇文献,本页显示第 17841 - 17860 篇。
序号 推送日期 文章 类型 简述 创新点 不足 研究目的 研究对象 领域 病种 技术 模型 数据类型 样本量 算法框架 模型架构 性能指标 计算资源
17841 2025-10-07
Near-lifespan longitudinal tracking of brain microvascular morphology, topology, and flow in male mice
2023-05-24, Nature communications IF:14.7Q1
研究论文 开发了一套在小鼠中纵向追踪大脑血管动态和解剖结构的方法 首次实现了在相同视野下对小鼠大脑微血管形态、拓扑结构和血流进行近生命周期的长期追踪 仅使用雄性小鼠进行研究,未包括雌性小鼠 研究年龄相关神经退行性疾病中的血管衰退过程 野生型和3xTg雄性小鼠 生物医学成像 阿尔茨海默病 光学相干断层扫描(OCT), 深度学习 深度学习 图像 野生型和3xTg雄性小鼠 NA NA NA NA
17842 2025-10-07
Digital staining facilitates biomedical microscopy
2023, Frontiers in bioinformatics IF:2.8Q2
综述 本文探讨了深度学习在生物医学显微镜中实现数字染色技术的方法与应用 将虚拟染色技术与神经网络结合,可校正显微镜像差并突破衍射极限分辨率 NA 改进生物医学显微镜的样本制备和成像流程 生物样本的显微镜成像 数字病理 NA 显微镜成像 深度学习 显微镜图像 NA NA 神经网络 NA NA
17843 2024-11-24
[Ecological sustainability of deep learning in pathology : A modeling study]
2025-Feb, Pathologie (Heidelberg, Germany)
NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
17844 2025-02-01
Bayesian deep learning applied to diabetic retinopathy with uncertainty quantification
2025-Jan-30, Heliyon IF:3.4Q1
研究论文 本文提出了一种基于贝叶斯深度学习的糖尿病视网膜病变分类方法,并通过不确定性量化提高了诊断的准确性和可靠性 使用贝叶斯卷积神经网络(CNN)结合变分推断(VI)和蒙特卡洛dropout(MC-dropout)方法,量化模型预测的不确定性 未提及具体局限性 提高糖尿病视网膜病变分类的准确性和可靠性 糖尿病视网膜病变(DR) 医学影像分析 糖尿病视网膜病变 贝叶斯深度学习 CNN, BCNN-VI, BCNN-MC-dropout 图像 APTOS 2019和Messidor-2两个基准数据集 NA NA NA NA
17845 2025-02-01
Improved Generalizability in Medical Computer Vision: Hyperbolic Deep Learning in Multi-Modality Neuroimaging
2024-Dec-12, Journal of imaging IF:2.7Q3
研究论文 本研究探讨了双曲卷积神经网络(HCNNs)在神经影像任务中相较于传统卷积神经网络(CNNs)的潜在优势,特别是在提高模型泛化能力方面 利用非欧几里得空间的几何原理,HCNNs在神经影像数据中展现出增强的鲁棒性和语义组织能力,尤其在零样本评估中表现优于CNNs和放射科医生 HCNNs在处理更大、更复杂的数据集时面临效率和性能挑战,需要进一步优化架构 研究目的是通过比较HCNNs和CNNs在多种医学影像模态和疾病中的表现,评估HCNNs在提高模型泛化能力方面的潜力 研究对象包括多模态神经影像数据集和缺血性卒中非对比CT图像 计算机视觉 阿尔茨海默病 深度学习 HCNNs, CNNs 图像 多模态神经影像数据集和缺血性卒中非对比CT图像 NA NA NA NA
17846 2025-02-01
Automatic Quantitative Analysis of Internal Quantum Efficiency Measurements of GaAs Solar Cells Using Deep Learning
2024-Dec-04, Advanced science (Weinheim, Baden-Wurttemberg, Germany)
研究论文 本文提出了一种使用深度学习方法自动预测砷化镓太阳能电池内部量子效率(IQE)测量中多个关键参数的方法 首次将深度学习方法应用于非硅太阳能电池(如砷化镓电池)的IQE测量定量分析,提高了参数预测的准确性和对噪声测量的鲁棒性 目前仅针对砷化镓太阳能电池进行了验证,未涉及其他非硅太阳能电池技术 提高砷化镓太阳能电池内部量子效率测量的定量分析效率和准确性 砷化镓太阳能电池 机器学习 NA 深度学习方法 NA 量子效率测量数据 NA NA NA NA NA
17847 2025-02-01
Inferring the genetic relationships between unsupervised deep learning-derived imaging phenotypes and glioblastoma through multi-omics approaches
2024-Nov-22, Briefings in bioinformatics IF:6.8Q1
研究论文 本研究旨在探讨无监督深度学习衍生的影像表型(UDIPs)与胶质母细胞瘤(GBM)之间的遗传关联 结合GWAS数据、单核RNA测序(snRNA-seq)和scPagwas方法,探索UDIPs与GBM的遗传联系,并识别了23个与GBM有显著因果关联的UDIPs 研究中涉及的UDIPs数量较多(512个),但仅有23个显示出显著关联,可能限制了结果的广泛适用性 研究无监督深度学习衍生的影像表型与胶质母细胞瘤之间的遗传关联 胶质母细胞瘤(GBM)患者及其影像表型 数字病理学 胶质母细胞瘤 GWAS, snRNA-seq, scPagwas 无监督深度学习 影像数据, 基因组数据 512个UDIPs NA NA NA NA
17848 2025-02-01
Deep learning-based image quality assessment for optical coherence tomography macular scans: a multicentre study
2024-Oct-22, The British journal of ophthalmology
研究论文 本文开发并外部测试了用于评估Cirrus和Spectralis光学相干断层扫描设备三维黄斑扫描图像质量的深度学习模型 使用深度学习模型评估三维黄斑扫描图像质量,并进行了多中心外部测试 研究依赖于特定设备(Cirrus和Spectralis)的数据,可能不适用于其他设备 开发用于评估光学相干断层扫描图像质量的深度学习模型 Cirrus和Spectralis光学相干断层扫描设备的三维黄斑扫描图像 计算机视觉 黄斑疾病 深度学习 ResNet-18 图像 2277个Cirrus 3D扫描和1557个Spectralis 3D扫描 NA NA NA NA
17849 2025-02-01
Deep learning analysis of serial digital breast tomosynthesis images in a prospective cohort of breast cancer patients who received neoadjuvant chemotherapy
2024-Sep, European journal of radiology IF:3.2Q1
研究论文 本研究探讨了在乳腺癌新辅助化疗(NACT)期间使用人工智能(AI)分析连续数字乳腺断层合成(DBT)图像,以预测NACT完成后的病理完全缓解(pCR) 首次将深度学习AI系统应用于连续DBT图像分析,以预测乳腺癌患者的pCR 样本量较小,未来需要更大数据集以进行更全面的模型训练和性能评估 探索AI在乳腺癌NACT期间预测pCR的潜力 接受NACT的乳腺癌患者 计算机视觉 乳腺癌 数字乳腺断层合成(DBT) 3D ResNet 图像 149名女性乳腺癌患者 NA NA NA NA
17850 2025-02-01
Multicenter privacy-preserving model training for deep learning brain metastases autosegmentation
2024-09, Radiotherapy and oncology : journal of the European Society for Therapeutic Radiology and Oncology IF:4.9Q1
研究论文 本研究探索了多中心数据异质性对深度学习脑转移瘤自动分割性能的影响,并评估了增量迁移学习技术LWF在不共享原始数据情况下提升模型泛化能力的有效性 提出了使用增量迁移学习技术(LWF)进行隐私保护的模型训练,以提高多中心数据下的模型泛化能力 数据异质性(如转移密度、空间分布和图像空间分辨率的差异)导致模型性能在不同中心间存在差异,限制了模型的泛化能力 研究多中心数据异质性对深度学习脑转移自动分割性能的影响,并评估增量迁移学习技术的有效性 脑转移(BM)的自动分割 计算机视觉 脑转移 深度学习 DeepMedic网络 医学影像 来自六个中心的脑转移数据集(UKER、USZ、Stanford、UCSF、NYU、BraTS Challenge 2023) NA NA NA NA
17851 2025-10-07
Artificial intelligence for triaging of breast cancer screening mammograms and workload reduction: A meta-analysis of a deep learning software
2024-Sep, Journal of medical screening IF:2.6Q2
meta-analysis 通过荟萃分析评估深度学习软件在乳腺癌筛查乳腺X线摄影分流中减少放射科医生工作量的效果 首次通过荟萃分析量化评估AI分流在乳腺癌筛查中减少工作量的潜力,确定了68.3%的工作量减少率同时保持93.1%的灵敏度 仅纳入了使用同一商业深度学习算法的三项研究,存在较高的异质性(I² > 80%),AI实施仍复杂且异质 评估基于AI的乳腺癌筛查乳腺X线摄影分流能否在保持非劣灵敏度的情况下减少放射科医生工作量 乳腺癌筛查乳腺X线摄影检查 digital pathology breast cancer deep learning DL mammogram images 156,852次检查 NA commercially available DL algorithm sensitivity, specificity NA
17852 2025-10-07
Neuroimage analysis using artificial intelligence approaches: a systematic review
2024-Sep, Medical & biological engineering & computing IF:2.6Q3
系统综述 本文系统综述了2013-2023年间人工智能技术在神经影像数据分析中的应用现状和发展趋势 首次系统梳理了近十年AI在神经影像分析中的应用格局,明确了主要临床任务分布和疾病研究重点 仅纳入456篇文献,可能未覆盖该领域所有相关研究;时间范围限定为2013-2023年 评估人工智能技术对神经影像数据分析的影响,提升诊断能力并推动领域发展 神经影像数据,重点关注精神和神经系统疾病 医学影像分析 精神和神经系统疾病 神经影像技术 机器学习,深度学习 神经影像数据 456篇相关文献,最终纳入104项研究进行详细分析 NA NA NA NA
17853 2025-02-01
Analysis of the integrated role of the Yangtze River Delta based on the industrial economic resilience of cities during COVID-19
2024-07-26, Scientific reports IF:3.8Q1
研究论文 本研究探讨了COVID-19期间长江三角洲地区城市产业经济韧性及其对区域一体化战略的影响 使用UNet深度学习方法检测土地利用类型,并结合土地转移矩阵和标准差椭圆分析工业用地变化和工业产值空间分布 研究区域仅限于安徽省的芜湖、马鞍山和滁州三市,可能无法全面反映整个长江三角洲地区的情况 分析COVID-19期间长江三角洲地区城市产业经济韧性及其对区域一体化战略的影响 安徽省的芜湖、马鞍山和滁州三市的工业用地和工业产值 机器学习 NA UNet深度学习方法 UNet 土地利用数据 安徽省的芜湖、马鞍山和滁州三市 NA NA NA NA
17854 2025-10-07
Deep learning automatically assesses 2-µm laser-induced skin damage OCT images
2024-Apr-18, Lasers in medical science IF:2.1Q2
研究论文 本研究提出基于光学相干断层扫描和深度学习技术的无创自动评估方法,用于定性和定量分析2微米激光诱导皮肤损伤 首次将深度学习与OCT技术结合实现激光皮肤损伤的自动定量评估,开发了无创在体分析方法 研究仅在小鼠模型中进行,尚未在人体验证 开发自动评估激光诱导皮肤损伤的方法 小鼠皮肤组织 计算机视觉 皮肤损伤 光学相干断层扫描 深度学习 图像 NA NA U-Net, DeepLabV3+, PSP-Net, HR-Net 分割准确性, 定量评估误差 NA
17855 2025-02-01
Application of Deep Learning Algorithms Based on the Multilayer Y0L0v8 Neural Network to Identify Fungal Keratitis
2024, Sovremennye tekhnologii v meditsine
研究论文 本文开发了一种基于深度学习算法的真菌性角膜炎诊断方法,通过分析眼前节照片,并在测试数据集上评估该方法的敏感性和特异性,与执业眼科医生的结果进行比较 使用多层Y0L0v8神经网络进行真菌性角膜炎的自动诊断,这是首次将此类深度学习算法应用于该疾病的诊断 方法的性能仅在测试数据集上进行了评估,未在更大规模或多样化的临床环境中验证 开发一种基于深度学习算法的真菌性角膜炎诊断方法 真菌性角膜炎 计算机视觉 角膜炎 深度学习 Y0L0v8神经网络 图像 NA NA NA NA NA
17856 2025-02-01
Evolution of artificial intelligence in healthcare: a 30-year bibliometric study
2024, Frontiers in medicine IF:3.1Q1
研究论文 本文对过去30年医疗保健领域人工智能(AI)的文献进行了动态和纵向的文献计量分析,以探讨医学与人工智能融合的现状和趋势 首次对医疗保健领域AI文献进行30年的纵向文献计量分析,揭示了AI技术在医疗领域的持续爆发性增长趋势 研究主要基于Web of Science数据库,可能未涵盖所有相关文献 探讨医学与人工智能融合的现状和趋势 1993年至2023年间发表的医疗保健领域AI相关文献 机器学习 NA 文献计量分析 NA 文献数据 22,950篇文献 NA NA NA NA
17857 2025-10-07
Alzheimer's Disease Classification Using 2D Convolutional Neural Networks
2021-11, Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Annual International Conference
研究论文 本研究提出三种基于2D卷积神经网络处理3D MRI数据的方法,用于阿尔茨海默病分类 首次系统性地将2D CNN应用于3D MRI数据分析,在保持性能的同时大幅降低计算成本 未详细讨论方法在其他神经系统疾病上的泛化能力,数据来源单一 开发高效准确的阿尔茨海默病自动诊断方法 阿尔茨海默病患者的脑部MRI数据 医学影像分析 阿尔茨海默病 脑磁共振成像(MRI) CNN 3D MRI图像 阿尔茨海默病神经影像倡议(ADNI)数据集 NA 2D CNN, ResNet 准确率, auROC NA
17858 2025-10-07
Deep learning based Nucleus Classification in pancreas histological images
2017-Jul, Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Annual International Conference
研究论文 提出基于深度学习的细胞核分类方法DeepNC,使用配对的病理学和免疫荧光图像进行胰腺组织细胞核分类 首次使用配对的病理学和免疫荧光图像训练深度学习模型进行细胞核分类,解决基因组/转录组与病理学评估之间的肿瘤纯度估计差异问题 训练大型数据集的深度学习模型面临挑战 改进组织学评估方法,准确分类胰腺组织中的细胞核 胰腺组织样本中的细胞核 数字病理学 胰腺癌 组织病理学成像,免疫荧光成像 深度学习 图像 大量样本 NA NA NA NA
17859 2025-01-31
Monitoring nap deprivation-induced fatigue using fNIRS and deep learning
2025-Dec, Cognitive neurodynamics IF:3.1Q2
研究论文 本文利用便携式fNIRS系统和深度学习模型监测由午睡剥夺引起的疲劳状态,并提出了一种新的1D修订CNN-ResNet网络用于疲劳状态分类 提出了一种基于双层通道衰减残差块的新型1D修订CNN-ResNet网络,用于处理fNIRS信号数据的高维度和多通道特性 NA 监测和分类由午睡剥夺引起的疲劳状态,探索通过运动刺激强制唤醒疲劳受试者的可行性 由午睡剥夺引起的疲劳状态 机器学习 NA fNIRS 1D revised CNN-ResNet fNIRS信号数据 NA NA NA NA NA
17860 2025-01-31
A multi-dimensional student performance prediction model (MSPP): An advanced framework for accurate academic classification and analysis
2025-Jun, MethodsX IF:1.6Q2
研究论文 本文提出了一种多维学生表现预测模型(MSPP),旨在通过深度学习和先进的数据预处理技术提高学生学术分类的准确性 MSPP模型结合了自适应超参数调整和先进的图神经网络层,能够处理不平衡和时间序列的教育数据集,并通过AI特征提供可解释性 NA 提高学生表现预测的准确性,以支持定制化干预措施,提升学习效果 学生学术数据 机器学习 NA 深度学习 图神经网络(GNN) 结构化训练记录 NA NA NA NA NA
回到顶部