深度学习在生物医药领域的应用

本数据库通过收集和整理最新科研文献信息而得,供了解领域前沿进展之用。数据源自 PubMed Data ,每日自动更新(使用关键词“['deep learning']”过滤),已收录文献数量参见 统计表格。表格内容由 GPT 自动整理,可能存在错误或遗漏,请使用时务必注意核实!

如有建议或合作意向,欢迎联系 linlin.yan(AT)bioinfo.app 或 微信 yanlinlin82。本项目遵循 MIT 许可 发布,欢迎下载 源码 自行修改使用。如觉得不错,还请不吝 给我打赏,你的支持是我继续创新的重要动力!

Sample Image
添加微信请说明来意
Sample Image
微信赞赏

除通过在线浏览外,为方便用户离线查阅,本站也提供 付费下载(定价19.9元)。之所以考虑收费,是因为批量扫描这些文献并整理也是有一定成本的,还请理解并多多支持。本站数据会持续更新,而仅需一次付费,未来就可以随时重新下载到最新版本数据。

当前筛选条件: [分区不过滤] [IF不过滤] [发表日期不过滤] [清除筛选条件]
当前共找到 34204 篇文献,本页显示第 17881 - 17900 篇。
序号 推送日期 文章 类型 简述 创新点 不足 研究目的 研究对象 领域 病种 技术 模型 数据类型 样本量 算法框架 模型架构 性能指标 计算资源
17881 2025-02-28
Sequence-Aware Vision Transformer with Feature Fusion for Fault Diagnosis in Complex Industrial Processes
2025-Feb-08, Entropy (Basel, Switzerland)
研究论文 本文提出了一种新颖的全局和局部特征融合序列感知视觉变换器(GLF-ViT),用于复杂工业过程中的故障诊断 通过修改特征嵌入以保留采样点相关性并保留更多局部信息,融合分类令牌的全局特征和编码器的局部特征,显著增强了复杂故障诊断的能力 尽管在TE数据集和电力传输故障数据集上表现出色,但该方法在其他类型工业数据上的泛化能力尚未验证 提高复杂工业过程中高维时间序列故障诊断的准确性 复杂工业过程中的故障数据 计算机视觉 NA NA Vision Transformer (ViT) 时间序列数据 Tennessee Eastman (TE) 数据集和电力传输故障数据集 NA NA NA NA
17882 2025-02-28
Metabolic Objectives and Trade-Offs: Inference and Applications
2025-Feb-06, Metabolites IF:3.4Q2
综述 本文综述了从多组学数据中确定代谢目标和权衡的挑战,并探讨了其在个性化医学、药物发现、组织工程和系统生物学中的潜在应用 结合单细胞组学、代谢建模和机器学习/深度学习方法,实现了在转录组和代谢水平上推断细胞目标,将基因表达模式与代谢表型联系起来 NA 确定细胞代谢目标,以支持代谢工程、细胞重编程和药物发现等应用 细胞代谢网络 系统生物学 NA 单细胞组学、代谢建模、机器学习/深度学习 NA 多组学数据 NA NA NA NA NA
17883 2025-02-28
Fault Diagnosis of Semi-Supervised Electromechanical Transmission Systems Under Imbalanced Unlabeled Sample Class Information Screening
2025-Feb-06, Entropy (Basel, Switzerland)
研究论文 本文提出了一种新的半监督故障诊断方法,针对机电传动系统在健康监测中标签数据稀缺和非标签数据丰富的问题,通过主动学习的信息筛选机制和数据不平衡驱动的成本敏感函数,显著提高了诊断模型对非标签样本的识别能力 提出了一种基于主动学习的信息筛选机制,结合数据不平衡驱动的成本敏感函数,解决了传统半监督深度学习方法在伪标签信息可靠性、非标签数据特征提取准确性和样本选择不平衡方面的不足 方法在仅包含少量标签数据的情况下进行了验证,但在更广泛的数据集和实际应用中的效果仍需进一步验证 解决机电传动系统健康监测中标签数据稀缺和非标签数据丰富的问题,提高故障诊断的准确性 机电传动系统的状态数据 机器学习 NA 主动学习,半监督学习 深度学习模型 状态数据 两个数据集,共12个实验场景 NA NA NA NA
17884 2025-02-28
Training Generalized Segmentation Networks with Real and Synthetic Cryo-ET data
2025-Feb-05, bioRxiv : the preprint server for biology
研究论文 本文介绍了一种名为CryoTomoSim (CTS)的开源软件包,用于生成合成冷冻电子断层扫描数据,以训练深度学习分割网络 开发了CryoTomoSim (CTS)软件包,通过合成数据训练深度学习分割网络,解决了真实训练数据获取的瓶颈问题 尽管合成数据作为初始模型非常有效,但其准确性目前有限,需要真实细胞数据来训练最准确和可推广的U-Net模型 研究如何通过合成和真实数据训练通用的冷冻电子断层扫描分割网络 冷冻电子断层扫描数据中的大分子复合物和细胞特征 计算机视觉 NA 冷冻电子断层扫描 (cryo-ET) U-Net 图像 超过100个神经元生长锥的断层扫描数据 NA NA NA NA
17885 2025-02-28
Exploring Applications of Artificial Intelligence in Critical Care Nursing: A Systematic Review
2025-Feb-04, Nursing reports (Pavia, Italy)
系统综述 本文系统评估了人工智能在重症监护护理领域的当前应用 本文综合分析了多种AI技术在重症监护护理中的应用,包括经典模型、机器学习方法、深度学习架构和生成式AI工具 研究中的异质性限制了得出关于AI在重症监护护理中应用效果的明确结论 评估人工智能在重症监护护理中的应用及其对患者结果的影响 重症监护护理中的患者和护理实践 医疗保健 重症监护 多种AI技术,包括逻辑回归、支持向量机、随机森林、神经网络和生成式AI工具如ChatGPT 多种模型,包括经典模型、机器学习模型、深度学习模型和生成式AI模型 结构化数据(如生命体征和实验室结果)和非结构化数据(如护理记录和患者历史),以及音频数据 24项研究,涉及1364篇初步筛选的文章 NA NA NA NA
17886 2025-02-28
Advancing MRI Reconstruction: A Systematic Review of Deep Learning and Compressed Sensing Integration
2025-Feb-01, ArXiv
PMID:39975448
综述 本文系统回顾了深度学习与压缩感知在MRI重建中的集成应用 深度学习与压缩感知的结合显著提高了MRI重建的速度和准确性 未提及具体的技术限制或挑战 探讨深度学习在MRI重建中的应用及其潜力 MRI图像重建 医学影像 NA 深度学习, 压缩感知 NA 图像 NA NA NA NA NA
17887 2025-02-28
An Online Evaluation Method for Random Number Entropy Sources Based on Time-Frequency Feature Fusion
2025-Jan-27, Entropy (Basel, Switzerland)
研究论文 本文提出了一种基于时频特征融合的在线随机数熵源评估方法,通过神经网络预测随机序列的下一位,并引入了一种新的深度学习架构FFT-ATT-LSTM 提出了一种新的深度学习架构FFT-ATT-LSTM,结合了简化的软注意力机制和快速傅里叶变换,有效融合时域和频域特征,提高了预测精度 NA 解决传统熵源评估方法难以在线部署的问题,实现在线检测熵源质量 随机数熵源 机器学习 NA 快速傅里叶变换(FFT),软注意力机制 FFT-ATT-LSTM 随机序列数据 NA NA NA NA NA
17888 2025-02-28
Mining Suicidal Ideation in Chinese Social Media: A Dual-Channel Deep Learning Model with Information Gain Optimization
2025-Jan-24, Entropy (Basel, Switzerland)
研究论文 本文提出了一种基于中文社交媒体的双通道深度学习模型DSI-BTCNN,用于识别自杀意念,并通过信息增益优化提高检测能力 提出了一种新的双通道模型DSI-BTCNN,结合信息增益优化的IDFN融合机制,有效分配计算资源以捕捉与自杀相关的关键特征 模型仅在中文社交媒体数据上进行了评估,未涉及其他语言或平台的数据 通过深度学习模型及时识别社交媒体上的自杀意念,以支持全球自杀预防工作 中文社交媒体数据 自然语言处理 NA 深度学习 DSI-BTCNN(双通道卷积神经网络) 文本 定制数据集 NA NA NA NA
17889 2025-02-28
Immunohistochemistry-Free Enhanced Histopathology of the Rat Spleen Using Deep Learning
2025-Jan, Toxicologic pathology IF:1.4Q4
研究论文 开发深度学习模型从H&E染色切片直接识别大鼠脾脏淋巴区室 首次实现无需免疫组化的深度学习增强组织病理学方法,直接从H&E染色量化脾脏淋巴区室 目前仅应用于正常大鼠脾脏,尚未验证于病变组织或其他物种 开发免疫系统增强组织病理学的深度学习定量评估方法 大鼠脾脏组织 数字病理学 NA 深度学习 深度学习模型 图像 正常大鼠脾脏切片 NA NA NA NA
17890 2025-02-28
Prediction models for cognitive impairment in middle-aged patients with cerebral small vessel disease
2025, Frontiers in neurology IF:2.7Q3
研究论文 本研究旨在开发基于海马纹理的模型,用于预测中年脑小血管病(CSVD)患者的认知障碍 使用Unet深度学习神经网络模型自动分割海马体,并结合LASSO方法选择放射组学特征,构建预测模型 结合影像标志物和海马纹理的组合模型并未比单独模型显著改善诊断效果(p > 0.05) 开发预测中年CSVD患者认知障碍的模型 145名CSVD患者和99名对照受试者 数字病理学 脑小血管病 深度学习、放射组学 Unet、LASSO 影像数据 244名受试者(145名CSVD患者和99名对照) NA NA NA NA
17891 2025-02-28
Advancing arabic dialect detection with hybrid stacked transformer models
2025, Frontiers in human neuroscience IF:2.4Q2
研究论文 本文提出了一种基于两种Transformer模型的混合堆叠模型,用于提高阿拉伯方言的分类性能 提出了一种新颖的堆叠模型,结合了Bert-Base-Arabertv02和Dialectal-Arabic-XLM-R-Base两种Transformer模型,以捕捉更广泛的语言特征 NA 提高阿拉伯方言的分类性能,以增强自然语言处理(NLP)应用的效果 阿拉伯方言 自然语言处理 NA 深度学习 Transformer, LSTM, GRU, CNN 文本 使用了IADD和Shami数据集进行模型评估 NA NA NA NA
17892 2025-02-28
KGRDR: a deep learning model based on knowledge graph and graph regularized integration for drug repositioning
2025, Frontiers in pharmacology IF:4.4Q1
研究论文 本文提出了一种基于知识图谱和图正则化集成的深度学习模型KGRDR,用于预测药物与疾病之间的潜在相互作用 KGRDR模型结合了多相似性集成和知识图谱学习,通过图正则化方法整合药物和疾病的多种相似性信息,有效消除噪声数据,并利用注意力机制融合相似性特征和拓扑特征,最终使用图卷积网络预测药物-疾病关联 未明确提及具体局限性 优化药物开发,加速新治疗方案的开发,降低成本并减轻风险 药物与疾病之间的相互作用 机器学习 NA 深度学习 图卷积网络(GCN) 药物和疾病的相似性信息、生物医学知识图谱 未明确提及具体样本数量 NA NA NA NA
17893 2025-02-28
Artificial intelligence in drug development: reshaping the therapeutic landscape
2025, Therapeutic advances in drug safety IF:3.4Q2
研究论文 本文探讨了人工智能在药物研发中的应用及其对治疗领域的重塑 人工智能通过机器学习、深度学习和神经网络等技术,革新了药物设计、靶点识别和临床试验预测,并加速了药物分子的开发和重新设计 AI模型通常被视为'黑箱',其结论难以理解,且由于模型透明度和算法偏见的缺乏,限制了其潜力 研究人工智能在药物研发中的应用及其对治疗领域的重塑 药物研发过程中的各个环节,包括药物设计、靶点识别和临床试验预测 机器学习 NA 机器学习、深度学习、神经网络 NA NA NA NA NA NA NA
17894 2025-02-28
Corrigendum: Predicting epidermal growth factor receptor mutation status of lung adenocarcinoma based on PET/CT images using deep learning
2025, Frontiers in oncology IF:3.5Q2
correction 本文是对先前发表的文章的更正,该文章涉及基于PET/CT图像使用深度学习预测肺腺癌表皮生长因子受体突变状态 NA NA 更正先前发表的文章中的错误 NA digital pathology lung cancer NA deep learning PET/CT images NA NA NA NA NA
17895 2025-10-07
MCNN-AAPT: accurate classification and functional prediction of amino acid and peptide transporters in secondary active transporters using protein language models and multi-window deep learning
2024-Nov-22, Journal of biomolecular structure & dynamics IF:2.7Q2
研究论文 开发结合蛋白质语言模型和多窗口深度学习的技术,用于二级主动转运体中氨基酸和肽转运体的准确分类及功能预测 首次整合三种前沿蛋白质语言模型(ProtTrans、ESM-1b、ESM-2)与多窗口扫描深度学习架构,实现局部和全局序列模式的联合捕捉 研究仅基于448个二级主动转运体样本,模型泛化能力需进一步验证 建立计算框架对二级主动转运体中的氨基酸和肽转运体进行功能分类及溶质载体蛋白关联预测 二级主动转运体(含36个溶质载体蛋白) 生物信息学 癌症 蛋白质语言模型,多窗口深度学习 深度学习神经网络 蛋白质序列数据 448个二级主动转运体(来自UniProt和TCDB数据库) NA 多窗口扫描架构 准确率,灵敏度,特异性,马修斯相关系数 NA
17896 2025-10-07
Artificial intelligence-based morphologic classification and molecular characterization of neuroblastic tumors from digital histopathology
2024-Nov-08, NPJ precision oncology IF:6.8Q1
研究论文 开发基于深度学习的AI模型,通过数字病理图像对神经母细胞瘤进行形态学分类和分子特征分析 采用注意力机制的多实例学习和自监督学习方法,使用迄今最大规模的神经母细胞瘤队列进行病理分类和MYCN扩增状态评估 NA 开发AI辅助的神经母细胞瘤分类系统 神经母细胞瘤 数字病理学 神经母细胞瘤 H&E染色全切片图像 深度学习 图像 迄今最大规模报道的队列 NA 注意力机制多实例学习(aMIL), 自监督学习(SSL) 诊断类别识别, 分级识别, 有丝分裂-核碎裂指数(MKI)评估, MYCN扩增状态识别 NA
17897 2025-10-07
An initial game-theoretic assessment of enhanced tissue preparation and imaging protocols for improved deep learning inference of spatial transcriptomics from tissue morphology
2024-Sep-23, Briefings in bioinformatics IF:6.8Q1
研究论文 通过改进组织制备和成像方案提升基于深度学习的空间转录组学形态学推断性能 首次从博弈论角度评估组织制备和成像方案对空间转录组学深度学习模型性能的影响,提出临床级标准化流程 研究样本量较小(仅13例结直肠癌患者),需要更大规模验证 评估改进的组织处理与成像方案对深度学习模型从组织形态推断空间转录组性能的影响 结直肠癌患者的组织样本 数字病理 结直肠癌 空间转录组学,自动化H&E染色,全玻片成像 CNN 组织图像 13例病理T分期III期结直肠癌患者 TensorFlow Inceptionv3 数据Shapley值 NA
17898 2025-10-07
Deep autoencoder-based behavioral pattern recognition outperforms standard statistical methods in high-dimensional zebrafish studies
2024-Sep, PLoS computational biology IF:3.8Q1
研究论文 本研究开发了一种基于深度自编码器的行为模式识别方法,用于分析斑马鱼高维行为数据并识别环境毒物引起的异常行为 使用半监督深度自编码器提取斑马鱼正常行为特征,相比传统统计方法能识别更多毒物诱导的异常行为模式 NA 开发更有效的行为模式识别方法以检测环境毒物对斑马鱼神经行为的影响 斑马鱼幼虫的行为数据 机器学习 神经毒性疾病 行为分析 深度自编码器 行为数据 NA NA 自编码器 NA NA
17899 2025-10-07
Artificial Intelligence for Early Detection of Pediatric Eye Diseases Using Mobile Photos
2024-08-01, JAMA network open IF:10.5Q1
研究论文 开发基于深度学习的人工智能模型,通过移动设备拍摄的照片早期检测儿童眼部疾病 首次使用移动照片和AI技术实现儿童近视、斜视和上睑下垂的便捷家庭筛查 研究为横断面设计,样本量相对有限,不同年龄组间存在性能差异 开发AI模型用于儿童眼部疾病的早期检测 被诊断患有近视、斜视或上睑下垂的儿童患者 计算机视觉 眼科疾病 深度学习 深度学习模型 图像 476名患者的1419张图像(225名女性,47.27%;299名6-12岁儿童,62.82%) NA NA 敏感度, 特异度, 准确率, AUC, 阳性预测值, 阴性预测值, 阳性似然比, 阴性似然比, F1分数 NA
17900 2025-10-07
Identification of an ANCA-Associated Vasculitis Cohort Using Deep Learning and Electronic Health Records
2024-Jun-10, medRxiv : the preprint server for health sciences
研究论文 本研究开发了一种基于深度学习的电子健康记录分析模型,用于准确识别ANCA相关性血管炎病例 首次将深度学习模型应用于电子健康记录中的临床文本分析,相比传统基于规则的方法能识别更多ANCA相关性血管炎病例 研究数据来源于单一医疗系统,模型性能需在更广泛人群中验证 开发更准确的ANCA相关性血管炎病例识别方法 电子健康记录中的临床文档 自然语言处理 ANCA相关性血管炎 电子健康记录分析 深度学习 文本 数据集I: 6,000个注释片段,数据集II: 3,008个注释片段,数据集III: 7,500个注释片段,测试队列: 2,000个样本 NA NA PPV, 敏感度, F分数, AUROC, AUPRC NA
回到顶部