本数据库通过收集和整理最新科研文献信息而得,供了解领域前沿进展之用。数据源自 PubMed Data ,每日自动更新,已收录文献数量参见 统计表格。表格内容由 GPT 自动整理,可能存在错误或遗漏,请使用时务必注意核实!
如有建议或合作意向,欢迎联系 linlin.yan(AT)bioinfo.app 或 微信 yanlinlin82。本项目遵循 MIT 许可 发布,欢迎下载 源码 自行修改使用。如觉得不错,还请不吝 给我打赏,你的支持是我继续创新的重要动力!
除通过在线浏览外,为方便用户离线查阅,本站也提供 付费下载(定价10元)。之所以考虑收费,是因为批量扫描这些文献并整理也是有一定成本的,还请理解并多多支持。本站数据会持续更新,而仅需一次付费,未来就可以随时重新下载到最新版本数据。
序号 | 推送日期 | 文章 | 类型 | 简述 | 创新点 | 不足 | 研究目的 | 研究对象 | 领域 | 病种 | 技术 | 模型 | 数据类型 | 样本量 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
161 | 2025-05-31 |
A lightweight adaptive spatial channel attention efficient net B3 based generative adversarial network approach for MR image reconstruction from under sampled data
2025-Apr, Magnetic resonance imaging
IF:2.1Q2
DOI:10.1016/j.mri.2024.110281
PMID:39672285
|
research paper | 提出了一种基于轻量级自适应空间通道注意力EfficientNet B3的生成对抗网络方法,用于从欠采样数据中重建MR图像 | 引入了自适应空间通道注意力机制和EfficientNet B3的生成对抗网络,优化了模型深度、宽度和分辨率之间的平衡,提高了重建质量 | 未提及具体的数据集规模和多样性,可能影响模型的泛化能力 | 加速MR图像采集并提高从欠采样k空间数据中重建图像的质量 | MR图像 | computer vision | NA | CS-MRI, deep learning | GAN, U-net, ResNet, EfficientNet B3 | image | NA |
162 | 2025-05-31 |
Waveform-Specific Performance of Deep Learning-Based Super-Resolution for Ultrasound Contrast Imaging
2025-04, IEEE transactions on ultrasonics, ferroelectrics, and frequency control
DOI:10.1109/TUFFC.2025.3537298
PMID:40031250
|
研究论文 | 本研究探讨了基于深度学习的超分辨率技术在超声对比成像中针对不同波形脉冲的性能表现 | 首次评估了CNN在谐波脉冲、啁啾脉冲和延迟编码脉冲序列驱动下对微泡定位的去卷积性能,并比较了不同脉冲在噪声条件下的鲁棒性 | 仅提供了初步的体外和体内超分辨率实验结果,尚未进行全面的临床应用验证 | 提高超声对比成像的空间分辨率以更好地解析动脉血流 | 超声对比成像中的微泡信号 | 医学影像处理 | 心血管疾病 | 超声对比成像、深度学习超分辨率 | CNN | 射频(RF)信号 | NA |
163 | 2025-05-31 |
Tissue Clutter Filtering Methods in Ultrasound Localization Microscopy Based on Complex-Valued Networks and Knowledge Distillation
2025-04, IEEE transactions on ultrasonics, ferroelectrics, and frequency control
DOI:10.1109/TUFFC.2025.3544692
PMID:40031806
|
研究论文 | 本研究提出了一种基于复数神经网络和知识蒸馏的超声定位显微镜组织杂波滤波方法,以提高滤波效率和性能 | 提出使用知识蒸馏技术,将复数卷积神经网络(CCNN)的知识迁移到实值卷积神经网络(CNN)中,从而在保持性能的同时提高滤波效率 | 虽然该方法在模拟和体内数据上表现良好,但可能仍需进一步验证其在更广泛临床数据上的适用性 | 提高超声定位显微镜(ULM)中组织杂波滤波的效率和性能 | 微泡(MBs)作为对比剂的超声定位显微镜图像 | 医学影像处理 | NA | 知识蒸馏、复数卷积神经网络(CCNN)、实值卷积神经网络(CNN) | CL-UNet(教师模型)、UNet-T(学生模型)、Guided UNet-T | I/Q信号、包络数据 | 模拟数据和体内数据 |
164 | 2025-05-31 |
Advancing Single-Plane Wave Ultrasound Imaging With Implicit Multiangle Acoustic Synthesis via Deep Learning
2025-04, IEEE transactions on ultrasonics, ferroelectrics, and frequency control
DOI:10.1109/TUFFC.2025.3541113
PMID:40031850
|
research paper | 该论文提出了一种通过深度学习隐式合成多角度声波信息的方法,以提升单平面波超声成像的质量,同时保持其高帧率优势 | 开发了一种新颖的网络架构,能够隐式集成多角度信息,通过生成和动态结合虚拟转向平面波来模拟多角度复合效果,而无需实际增加平面波数量 | 虽然论文展示了在模拟、实验模型和体内目标数据集上的优越性能,但未明确说明该方法在临床环境中的广泛适用性和潜在限制 | 提升单平面波超声成像的质量,同时保持其高帧率优势 | 平面波超声成像技术 | 医学影像处理 | NA | 深度学习 | 深度学习网络(具体架构未明确说明) | 超声图像数据 | 模拟数据、实验模型数据和体内目标数据(具体数量未明确说明) |
165 | 2025-05-31 |
An overview of utilizing artificial intelligence in localized prostate cancer imaging
2025-Apr, Expert review of medical devices
IF:2.9Q3
DOI:10.1080/17434440.2025.2477601
PMID:40056148
|
review | 本文综述了人工智能在前列腺癌多参数MRI成像中的应用及其进展 | 探讨了AI如何通过自动化关键任务(如前列腺分割、病变检测和分类)来提升mpMRI的诊断性能 | AI模型的临床整合仍受限于需要更大规模、多机构的验证研究 | 提升前列腺癌的诊断准确性和风险分层 | 前列腺癌(PCa)患者的多参数MRI(mpMRI)影像 | digital pathology | prostate cancer | multiparametric MRI (mpMRI) | machine learning, deep learning | image | NA |
166 | 2025-05-31 |
Applications of artificial intelligence in ultrasound imaging for carpal-tunnel syndrome diagnosis: a scoping review
2025-Apr, International orthopaedics
IF:2.0Q2
DOI:10.1007/s00264-025-06497-1
PMID:40100390
|
综述 | 本文是一篇范围综述,分析了人工智能在超声成像中用于诊断腕管综合征的应用 | 探讨了人工智能在提高诊断准确性、效率和患者预后方面的潜力,包括任务自动化、提供客观测量和促进腕管综合征的早期检测 | 数据集限制、超声成像的变异性以及伦理问题 | 分析人工智能在超声成像中用于诊断腕管综合征的应用 | 腕管综合征的诊断 | 数字病理 | 腕管综合征 | 深度学习,特别是CNN,以及放射组学特征和传统机器学习技术 | CNN | 超声图像 | 18篇纳入研究的文献 |
167 | 2025-05-31 |
Electrocardiogram-based deep learning to predict left ventricular systolic dysfunction in paediatric and adult congenital heart disease in the USA: a multicentre modelling study
2025-04, The Lancet. Digital health
DOI:10.1016/j.landig.2025.01.001
PMID:40148010
|
research paper | 该研究利用深度学习技术,基于心电图(ECG)预测成人和儿童先天性心脏病患者的左心室收缩功能障碍(LVSD) | 首次将人工智能增强的心电图分析(AI-ECG)全面应用于先天性心脏病患者的LVSD预测,并验证了其在不同病变类型中的有效性 | 研究主要基于美国两家医院的数据,可能在其他地区或人群中的适用性有待验证 | 开发一种能够预测先天性心脏病患者当前和未来LVSD的算法 | 成人和儿童先天性心脏病患者 | digital pathology | cardiovascular disease | AI-ECG | CNN | ECG和超声心动图数据 | 训练队列包含124,265对ECG-超声心动图数据(49,158名患者),内部测试组21,068名患者,外部验证组42,984名患者 |
168 | 2025-05-31 |
A Single-Camera Method for Estimating Lift Asymmetry Angles Using Deep Learning Computer Vision Algorithms
2025-Apr, IEEE transactions on human-machine systems
IF:3.5Q1
DOI:10.1109/thms.2025.3539187
PMID:40160534
|
research paper | 提出了一种使用单摄像头和深度学习计算机视觉算法自动测量NIOSH提升方程不对称角的方法 | 利用单摄像头和深度学习算法解决了实际场景中视角遮挡和摄像头放置限制的问题 | 与3D运动捕捉相比,精度误差为6.25°,准确度误差为9.45° | 开发一种自动测量提升不对称角的方法 | 十名参与者在实验室环境中进行的各种提升动作 | computer vision | NA | HR-Net, VideoPose3D | deep learning | video | 10名参与者,360个样本 |
169 | 2025-05-31 |
Automated Bi-Ventricular Segmentation and Regional Cardiac Wall Motion Analysis for Rat Models of Pulmonary Hypertension
2025-Apr, Pulmonary circulation
IF:2.2Q3
DOI:10.1002/pul2.70092
PMID:40356847
|
研究论文 | 本文提出了一种基于深度学习的自动化流程,用于肺动脉高压(PH)大鼠模型的双心室分割和3D壁运动分析 | 开发了一种高效的自动化深度学习管道,用于PH大鼠模型的双心室分割和3D壁运动分析,填补了临床前研究与临床AI心脏成像发展之间的空白 | 研究仅基于大鼠模型,结果向人类应用的转化需要进一步验证 | 开发一种自动化工具,用于肺动脉高压疾病进展及其对心脏影响的研究 | 肺动脉高压(PH)大鼠模型 | 数字病理学 | 肺动脉高压 | 心脏磁共振扫描 | 全卷积网络 | 图像 | 163个短轴电影心脏磁共振扫描,来自MCT和SuHx PH大鼠 |
170 | 2025-05-31 |
NLP-enriched social determinants of health improve prediction of suicide death among the Veterans
2025-Mar-31, Research square
DOI:10.21203/rs.3.rs-5067562/v1
PMID:40235516
|
研究论文 | 本研究探讨了通过自然语言处理(NLP)提取的社会和行为健康决定因素(SBDH)如何提高退伍军人精神病出院后自杀死亡的预测准确性 | 结合NLP提取的SBDH和ICD编码的SBDH,显著提升了自杀死亡预测模型的性能、校准和公平性 | 研究仅针对美国退伍军人群体,可能无法推广到其他人群 | 提高精神病出院患者自杀死亡的预测准确性 | 197,581名美国退伍军人,共414,043次精神病出院记录 | 自然语言处理 | 精神疾病 | NLP, ICD编码 | 集成机器学习模型, TransformEHR(基于transformer的深度学习模型) | 文本(临床笔记), 结构化数据(ICD编码) | 197,581名退伍军人,414,043次出院记录 |
171 | 2025-05-31 |
Deep Learning of Proteins with Local and Global Regions of Disorder
2025-Mar-29, ArXiv
PMID:40034137
|
研究论文 | 提出了一种新的机器学习方法IDPForge,用于生成全原子水平的内在无序蛋白质(IDPs)和内在无序区域(IDRs)的结构集合 | IDPForge利用transformer蛋白质语言扩散模型,无需序列特异性训练或从粗粒度表示进行反向转换,即可生成与实验数据良好一致的IDP/IDR构象集合 | 未明确提及具体局限性 | 改进对内在无序蛋白质和区域的结构预测 | 内在无序蛋白质(IDPs)和内在无序区域(IDRs) | 机器学习 | NA | transformer蛋白质语言扩散模型 | transformer | 蛋白质序列 | NA |
172 | 2025-05-31 |
Deep neural networks excel in COVID-19 disease severity prediction-a meta-regression analysis
2025-Mar-26, Scientific reports
IF:3.8Q1
DOI:10.1038/s41598-025-95282-6
PMID:40133706
|
meta-analysis | 该研究通过元回归分析评估了深度神经网络在COVID-19疾病严重程度预测中的优越性 | 首次使用MetaForest算法识别工具性能的相关混杂因素,并通过混合效应元回归模型比较了线性、机器学习和深度学习方法 | 88%的研究存在高偏倚风险,主要由于数据分析的缺陷 | 评估COVID-19严重程度预测工具的性能,指导临床医生选择最佳工具并优化资源管理 | 住院的COVID-19患者 | 机器学习 | COVID-19 | MetaForest算法, 混合效应元回归模型 | Neural Networks, 机器学习方法 | 临床、实验室和影像数据 | 约280万患者,来自430项独立评估 |
173 | 2025-05-31 |
AI-Derived Blood Biomarkers for Ovarian Cancer Diagnosis: Systematic Review and Meta-Analysis
2025-Mar-24, Journal of medical Internet research
IF:5.8Q1
DOI:10.2196/67922
PMID:40126546
|
meta-analysis | 本文通过系统综述和荟萃分析评估了AI衍生的血液生物标志物在卵巢癌诊断中的研究质量和有效性 | 首次对AI在卵巢癌血液生物标志物发现中的诊断价值进行了系统评估,并比较了不同AI算法和样本类型的性能差异 | 纳入研究之间存在异质性,且部分研究缺乏外部验证 | 评估AI衍生的血液生物标志物在卵巢癌诊断中的有效性 | 卵巢癌患者 | 数字病理 | 卵巢癌 | AI算法(包括机器学习和深度学习) | 机器学习 vs 深度学习 | 血液生物标志物数据 | 40项研究 |
174 | 2025-05-31 |
Explainable AI for Intraoperative Motor-Evoked Potential Muscle Classification in Neurosurgery: Bicentric Retrospective Study
2025-Mar-24, Journal of medical Internet research
IF:5.8Q1
DOI:10.2196/63937
PMID:40127441
|
研究论文 | 本研究开发并评估了用于术中运动诱发电位(MEP)肌肉分类的机器学习方法,并利用可解释人工智能(XAI)技术识别关键信号特征 | 结合机器学习与可解释人工智能技术,首次在双中心设置下验证MEP信号分类模型,并识别出频率成分和峰值潜伏期等关键特征 | 研究为回顾性设计,样本量相对有限(151例训练手术/58例测试手术),且仅针对四种特定肌肉 | 开发可靠的MEP肌肉分类模型以提高神经外科手术患者安全性,并探索影响分类的关键信号特征 | 幕上神经外科手术中四种肌肉(指伸肌、拇短展肌、胫骨前肌和拇展肌)的运动诱发电位信号 | 数字病理 | 神经系统疾病 | 运动诱发电位监测(IONM) | 随机森林(RF)、1D-CNN和2D-CNN | 时间序列生物电信号 | 训练集:36,992个MEP(151例手术);测试集:24,298个MEP(58例手术) |
175 | 2025-05-31 |
Establishment of a deep-learning-assisted recurrent nasopharyngeal carcinoma detecting simultaneous tactic (DARNDEST) with high cost-effectiveness based on magnetic resonance images: a multicenter study in an endemic area
2025-Mar-24, Cancer imaging : the official publication of the International Cancer Imaging Society
IF:3.5Q1
DOI:10.1186/s40644-025-00853-5
PMID:40128777
|
研究论文 | 本研究探讨了利用未增强磁共振图像(MRI)检测局部复发性鼻咽癌(rNPC)的可行性,并通过深度学习模型优化了随访的分层管理策略 | 开发了一种基于深度学习的复发性鼻咽癌同步检测策略(DARNDEST),结合了3D DenseNet和ResNet框架,提高了检测的准确性和敏感性 | 特异性相比T1_T2模型有所降低,且研究结果基于假设的1000名患者队列 | 优化复发性鼻咽癌的检测方法,提高随访管理的效率和经济效益 | 局部复发性鼻咽癌(rNPC)患者 | 数字病理 | 鼻咽癌 | MRI(T1WI, T2WI, T1WIC) | 3D DenseNet, ResNet | 图像 | 假设队列1000名患者(内部和外部测试集) |
176 | 2025-05-31 |
A Two-Stage Lightweight Deep Learning Framework for Mass Detection and Segmentation in Mammograms Using YOLOv5 and Depthwise SegNet
2025-Mar-14, Journal of imaging informatics in medicine
DOI:10.1007/s10278-025-01471-0
PMID:40087224
|
研究论文 | 提出了一种轻量级的两阶段深度学习框架,用于在乳腺X光片中检测和分割肿块,确保医疗数据隐私 | 结合YOLOv5和深度可分离卷积的SegNet架构,创建了一个参数少、推理速度快的轻量级模型,可直接在用户浏览器中运行 | 在CBIS-DDSM数据集上的mAP@50为50.3%,性能仍有提升空间 | 开发一个高效且保护隐私的乳腺癌肿块检测和分割解决方案 | 乳腺X光片中的肿块 | 计算机视觉 | 乳腺癌 | 深度学习 | YOLOv5, SegNet | 图像 | CBIS-DDSM和INbreast数据集 |
177 | 2025-05-31 |
Tumor cell villages define the co-dependency of tumor and microenvironment in liver cancer
2025-Mar-12, bioRxiv : the preprint server for biology
DOI:10.1101/2025.03.07.642107
PMID:40161587
|
研究论文 | 该研究通过空间单细胞成像和单细胞RNA测序分析了50个肿瘤生物样本中的200多万个细胞,开发了一种基于深度学习的策略来空间映射肿瘤细胞状态及其周围结构 | 提出了空间动态网络(SDN)的概念,揭示了肿瘤细胞状态如何组织成独特的集群('村庄'),并展示了这些村庄与肿瘤微环境之间的分子共依赖性 | 研究仅针对肝癌,未涉及其他癌症类型 | 理解肿瘤空间景观及其对肿瘤侵袭性的影响 | 肝癌肿瘤细胞及其微环境 | 数字病理学 | 肝癌 | 空间单细胞成像, 单细胞RNA测序 | 深度学习 | 图像, 基因表达数据 | 50个肿瘤生物样本中的200多万个细胞 |
178 | 2025-05-31 |
Deep Learning Study of Alkaptonuria Spinal Disease Assesses Global and Regional Severity and Detects Occult Treatment Status
2025-Mar-12, medRxiv : the preprint server for health sciences
DOI:10.1101/2025.03.11.25323762
PMID:40162283
|
研究论文 | 本研究探讨了深度学习在罕见疾病碱尿症(AKU)脊柱病变中的应用,评估了其识别疾病整体和局部严重程度及检测隐匿治疗状态的能力 | 首次将深度学习应用于罕见疾病碱尿症的脊柱影像分析,并成功检测出患者的隐匿治疗状态 | 真空椎间盘现象的预测一致性较低(41-90%) | 评估深度学习在罕见疾病医学影像分析中的有效性 | 碱尿症患者的颈椎和腰椎X光片 | 数字病理 | 碱尿症 | 深度学习 | DL | 医学影像 | 未明确说明样本数量,但包含颈椎和腰椎X光片 |
179 | 2025-05-31 |
Performance Improvement of a Natural Language Processing Tool for Extracting Patient Narratives Related to Medical States From Japanese Pharmaceutical Care Records by Increasing the Amount of Training Data: Natural Language Processing Analysis and Validation Study
2025-Mar-04, JMIR medical informatics
IF:3.1Q2
DOI:10.2196/68863
PMID:40053805
|
research paper | 该研究旨在通过增加训练数据量,提高从日语药学护理记录中提取患者叙述相关医疗信息的自然语言处理工具的性能 | 开发了一个针对日语患者叙述的高性能NLP系统,并通过逐步增加训练数据量来考察性能提升 | 系统在分析药学护理记录之外的其他来源文本(如病例报告)时性能较低,表明其更适用于药学护理记录的主观数据分析 | 开发一个高性能NLP系统,用于从患者叙述中提取临床信息 | 日语药学护理记录中的患者主观叙述文本 | natural language processing | NA | NLP, deep learning | BERT-CRF | text | 12,004条记录(来自6,559个案例) |
180 | 2025-05-31 |
Graph neural networks for single-cell omics data: a review of approaches and applications
2025-Mar-04, Briefings in bioinformatics
IF:6.8Q1
DOI:10.1093/bib/bbaf109
PMID:40091193
|
综述 | 本文系统回顾了图神经网络(GNNs)在单细胞组学数据分析中的应用及其六种变体 | 首次系统总结了GNNs在单细胞组学数据分析中的107个成功应用案例,并整理了77个公开可用的单细胞数据集 | 当前研究可能存在方法学上的不足,需要未来进一步探索 | 深化GNNs在单细胞组学数据分析中的应用 | 单细胞组学数据 | 机器学习 | NA | 单细胞测序技术 | GNN及其六种变体 | 单细胞组学数据(表观基因组学、转录组学、空间转录组学、蛋白质组学和多组学) | 总结了77个公开可用的单细胞数据集 |