本数据库通过收集和整理最新科研文献信息而得,供了解领域前沿进展之用。数据源自 PubMed Data ,每日自动更新(使用关键词“['deep learning']”过滤),已收录文献数量参见 统计表格。表格内容由 GPT 自动整理,可能存在错误或遗漏,请使用时务必注意核实!
如有建议或合作意向,欢迎联系 linlin.yan(AT)bioinfo.app 或 微信 yanlinlin82。本项目遵循 MIT 许可 发布,欢迎下载 源码 自行修改使用。如觉得不错,还请不吝 给我打赏,你的支持是我继续创新的重要动力!


除通过在线浏览外,为方便用户离线查阅,本站也提供 付费下载(定价19.9元)。之所以考虑收费,是因为批量扫描这些文献并整理也是有一定成本的,还请理解并多多支持。本站数据会持续更新,而仅需一次付费,未来就可以随时重新下载到最新版本数据。
| 序号 | 推送日期 | 文章 | 类型 | 简述 | 创新点 | 不足 | 研究目的 | 研究对象 | 领域 | 病种 | 技术 | 模型 | 数据类型 | 样本量 | 算法框架 | 模型架构 | 性能指标 | 计算资源 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 1801 | 2025-12-03 |
Deep learning-based hyperspectral oil spill detection for marine pollution monitoring in the Gulf of Mexico: A step toward marine pollution monitoring and SDG 14 compliance
2026-Jan, Marine pollution bulletin
IF:5.3Q1
DOI:10.1016/j.marpolbul.2025.118908
PMID:41202730
|
研究论文 | 本研究应用高光谱遥感数据与深度学习技术,提高墨西哥湾石油泄漏检测的准确性和效率 | 结合高光谱影像的丰富光谱信息与深度学习分割模型,实现可靠的石油污染区域检测 | 数据稀缺和高维度问题通过主成分分析和标准化补丁输入处理,但未讨论模型泛化能力或实时检测限制 | 增强石油泄漏检测精度和效率,支持海洋污染监测和可持续发展目标14的合规性 | 墨西哥湾的石油泄漏污染区域 | 计算机视觉 | NA | 高光谱遥感 | CNN | 图像 | 使用公开可用的高光谱石油泄漏数据库(HOSD) | NA | U-Net, DeepLabv3 | IoU, F1分数, 精确率, 召回率 | NA |
| 1802 | 2025-12-03 |
Enhanced osteoporosis screening via multi-output deep learning: Segmentation and classification of metacarpal radiographs
2026-Jan, European journal of radiology
IF:3.2Q1
DOI:10.1016/j.ejrad.2025.112507
PMID:41223626
|
研究论文 | 本文提出了一种名为OMO-Net的多输出深度学习架构,用于同时执行掌骨X光片的图像分割和骨质疏松症分类 | OMO-Net创新性地将ResNet-50特征提取器与专用的分割和分类分支集成,实现了同时定位诊断关键区域和进行稳健分类的双任务框架 | NA | 通过多输出深度学习增强骨质疏松症筛查的准确性和临床工作流程 | 掌骨X光片 | 计算机视觉 | 骨质疏松症 | NA | CNN | 图像 | NA | NA | ResNet-50 | AUC, F1-score | NA |
| 1803 | 2025-12-03 |
LG-nnU-net for multilabel anal sphincter segmentation on MRI: quantitative evaluation in patients with anal fistula
2026-Jan, European journal of radiology
IF:3.2Q1
DOI:10.1016/j.ejrad.2025.112509
PMID:41232256
|
研究论文 | 本文开发并评估了一种名为LG-nnU-net的新型深度学习分割框架,用于在MRI上对肛门括约肌子结构进行多标签分割,旨在提供可靠的定量解剖信息 | 提出了一种优化的nnU-net架构(LG-nnU-net),采用了非对称编码器扩展、组归一化、多尺度特征聚合和深度监督等技术,在肛门括约肌多标签分割任务上超越了ResU-net、DenseU-net和U-net++等对比模型 | 本研究为单中心回顾性研究,对高位/低位肛瘘分类的临床影响尚未验证,需要进一步的多中心验证和前瞻性结果研究 | 开发并评估一个用于MRI肛门括约肌子结构多标签分割的深度学习框架,以提供定量解剖信息 | 肛门括约肌子结构,包括肛提肌、耻骨直肠肌以及肛门外括约肌的浅部和皮下部 | 数字病理学 | 肛瘘 | MRI(冠状位T2加权成像) | 深度学习分割模型 | 医学图像(MRI) | 272名肛瘘患者(训练集218人,测试集54人) | nnU-net | LG-nnU-net(基于nnU-net的优化架构) | Dice相似系数, Hausdorff距离, 平均对称表面距离 | NA |
| 1804 | 2025-12-03 |
Improved image quality and dose reduction in liver CT using deep learning-based reconstruction: A comparative study
2026-Jan, European journal of radiology
IF:3.2Q1
DOI:10.1016/j.ejrad.2025.112520
PMID:41264979
|
研究论文 | 本研究比较了基于深度学习的图像重建(DLIR)与混合迭代重建(HIR)算法在肝脏CT成像中的图像质量和辐射剂量 | 首次在肝脏病灶患者中系统比较DLIR与HIR算法,证明DLIR能在降低辐射剂量的同时显著提升图像质量 | 研究仅针对特定CT扫描仪和肝脏病灶患者,未评估其他解剖部位或疾病类型 | 评估和比较两种CT重建算法的图像质量与辐射剂量 | 153名至少有一个肝脏病灶(包括肝囊肿、血管瘤、肝细胞癌和胆管癌)的患者 | 医学影像处理 | 肝脏疾病 | CT扫描 | 深度学习重建算法 | CT图像 | 153名患者,共306个肝脏病灶 | NA | NA | 图像质量评分(5点李克特量表)、CT衰减值(HU)、图像噪声(SD)、信噪比(SNR)、对比噪声比(CNR)、辐射剂量指数(CTDI、DLP) | NA |
| 1805 | 2025-12-03 |
Deep learning-reconstructed time-maximum intensity projection versus iterative reconstruction for collateral assessment in acute anterior circulation ischemic stroke
2026-Jan, European journal of radiology
IF:3.2Q1
DOI:10.1016/j.ejrad.2025.112524
PMID:41264986
|
研究论文 | 本研究评估了深度学习重建的时间最大强度投影在急性前循环缺血性卒中患者中的应用,并与单相CTA、多相CTA和CT灌注体积测量法在侧支循环评估和90天预后预测能力方面进行了比较 | 首次将深度学习重建的时间最大强度投影技术应用于急性卒中患者的侧支循环评估,并证明其能整合CT灌注的时间信息为单一高质量血管造影数据集,无需额外采集即可获得优于单相CTA的图像质量和预后区分能力 | 研究为回顾性设计且样本量较小(仅75例患者),可能限制了结果的普遍性和统计效力 | 评估深度学习重建的时间最大强度投影在急性前循环缺血性卒中患者侧支循环评估和预后预测中的性能 | 75例单侧前循环大血管闭塞的急性缺血性卒中患者 | 数字病理学 | 心血管疾病 | CT血管造影和CT灌注扫描 | 深度学习 | 医学影像 | 75例患者 | NA | NA | ROC曲线下面积, 敏感性, 特异性, 图像噪声, 信噪比, 对比噪声比 | NA |
| 1806 | 2025-12-03 |
Dual-Phase deep learning Enhances detection of incidental small pancreatic cystic lesion (0.5-3 cm) on Contrast-Enhanced CT
2026-Jan, European journal of radiology
IF:3.2Q1
DOI:10.1016/j.ejrad.2025.112510
PMID:41264978
|
研究论文 | 本研究开发了一种双相深度学习模型,用于在增强CT图像上检测偶然发现的小胰腺囊性病变 | 提出了一种结合动脉期和门脉期CT图像的双相深度学习模型,相比单相模型和初级放射科医生,在检测小胰腺囊性病变方面表现出更优且更稳健的性能 | 研究为回顾性设计,样本量有限(437个病变),且仅基于单一机构的CT图像,可能影响模型的泛化能力 | 开发并评估一种深度学习模型,以提高在增强CT上检测偶然发现的小胰腺囊性病变的准确性 | 增强CT图像中的胰腺囊性病变(0.5-3 cm)和正常胰腺组织 | 计算机视觉 | 胰腺癌 | 对比增强CT成像 | 深度学习模型 | 医学图像(CT) | 437个偶然发现的小胰腺囊性病变(包括201个亚厘米囊肿)和193个正常胰腺,数据收集时间为2018年1月至2020年12月 | NA | 双相深度学习模型,单相深度学习模型 | 灵敏度,特异性,任意假阳性率,准确度 | NA |
| 1807 | 2025-12-03 |
Enhanced opportunistic CT screening for osteoporosis using Machine learning derived volumetric vertebral and complementary body composition information
2026-Jan, European journal of radiology
IF:3.2Q1
DOI:10.1016/j.ejrad.2025.112555
PMID:41275853
|
研究论文 | 本研究通过深度学习分割CT图像,整合椎体体积和身体成分特征,以增强骨密度预测和骨质疏松分类 | 开发了两阶段3D nnU-Net用于椎体分割,并结合身体成分特征,相比传统单切片方法显著提升了骨密度预测和骨质疏松检测的准确性 | 研究为回顾性设计,样本量相对有限(383名成人),且未探讨模型在更广泛人群或不同CT扫描协议下的泛化能力 | 评估整合椎体体积和身体成分特征是否能增强骨密度预测和骨质疏松分类 | 接受常规健康检查的成人,包括同日腹部CT扫描和双能X线吸收测定法(DXA)数据 | 数字病理学 | 骨质疏松症 | CT扫描,深度学习分割,双能X线吸收测定法(DXA) | 3D nnU-Net, 3D U-Net | CT图像 | 383名成人(平均年龄59.8岁,50.1%女性),使用475次CT扫描进行模型开发 | NA | 3D nnU-Net, 3D U-Net | 相关系数,AUROC,敏感性,特异性 | NA |
| 1808 | 2025-12-03 |
Transformer-based multimodal fusion model predicts early hematoma expansion in spontaneous cerebral hemorrhage: A multicenter study
2026-Jan, European journal of radiology
IF:3.2Q1
DOI:10.1016/j.ejrad.2025.112465
PMID:41135231
|
研究论文 | 本研究开发了一种基于Transformer的多模态融合模型,用于预测自发性脑出血患者的早期血肿扩张 | 首次将深度学习特征、影像组学特征和临床因素通过Transformer模型进行融合,用于早期血肿扩张的预测 | 样本量相对有限,且为回顾性研究,需要进一步前瞻性验证 | 开发一个精确预测自发性脑出血患者早期血肿扩张的模型 | 自发性脑出血患者 | 医学影像分析 | 脑出血 | 非对比计算机断层扫描 | Transformer, SVM, LR, RF, AdaBoost | 图像, 临床数据 | 465名患者(来自三家医院) | NA | Transformer | AUC, 校准曲线 | NA |
| 1809 | 2025-12-03 |
A deep learning-based method for marine oil spill detection and its application in UAV imagery
2026-Jan, Marine pollution bulletin
IF:5.3Q1
DOI:10.1016/j.marpolbul.2025.118889
PMID:41166779
|
研究论文 | 本研究开发了一种基于YOLOv12的无人机图像海洋溢油检测框架,旨在提高溢油检测的准确性和边界划分的精度 | 提出了一种基于YOLOv12的无人机图像溢油检测框架,通过高分辨率输入、预训练权重初始化和余弦退火学习率调度策略,增强了污染特征表示能力 | 未明确提及模型在极端天气或夜间条件下的性能,也未讨论计算资源需求或实时处理速度的详细限制 | 开发高效智能的海洋溢油检测机制,以支持早期预警和快速响应,保护海洋生态系统和沿海经济安全 | 无人机图像中的海洋溢油区域 | 计算机视觉 | NA | 无人机遥感成像 | CNN | 图像, 视频 | 构建了一个包含多样溢油形态、不同海洋干扰条件和多尺度目标的遥感图像数据集 | NA | YOLOv12 | F1 Score, mAP@0.5, mAP@0.5-0.95, 精确率-召回率曲线 | NA |
| 1810 | 2025-12-03 |
Artificial intelligence in sport psychology: Implications for the identification and development of talent
2026-Jan, Psychology of sport and exercise
IF:3.1Q1
DOI:10.1016/j.psychsport.2025.102977
PMID:41326137
|
综述 | 本文探讨了人工智能(AI)和机器学习(ML)在运动心理学领域,特别是在人才识别与发展方面的应用、挑战与未来方向 | 强调了将AI/ML应用于运动心理学人才识别时,需整合心理结构和主观因素,并提出了通过人机交互(如对话式AI、数字孪生)来增强专家与复杂系统之间沟通与信任的未来方向 | AI/ML的实施面临数据可用性、质量、所有权、标注困难等重大障碍;纵向研究常受数据缺失和不平衡(如顶尖运动员样本稀少)影响,导致模型存在偏差且泛化能力差;心理和主观因素(如教练判断、运动员态度)目前代表性不足 | 探讨人工智能在运动心理学中的应用,特别是其对人才识别与发展的影响 | 运动心理学领域的人才识别与发展过程 | 机器学习 | NA | 机器学习,监督学习,深度学习 | NA | NA | NA | NA | NA | NA | NA |
| 1811 | 2025-12-03 |
Letter re: A deep learning model for preoperative risk stratification of pancreatic ductal adenocarcinoma based on genomic predictors of liver metastasis
2025-Dec-09, European journal of cancer (Oxford, England : 1990)
DOI:10.1016/j.ejca.2025.116046
PMID:41326211
|
NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
| 1812 | 2025-10-30 |
AI-Enabled Echocardiography Interpretation With Multitask Deep Learning
2025-Dec-02, JAMA
DOI:10.1001/jama.2025.16625
PMID:41160021
|
NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
| 1813 | 2025-10-30 |
AI-Enabled Echocardiography Interpretation With Multitask Deep Learning-Reply
2025-Dec-02, JAMA
DOI:10.1001/jama.2025.16627
PMID:41160035
|
NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
| 1814 | 2025-10-30 |
AI-Enabled Echocardiography Interpretation With Multitask Deep Learning
2025-Dec-02, JAMA
DOI:10.1001/jama.2025.16623
PMID:41160046
|
NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
| 1815 | 2025-12-03 |
MSformer: A Meta-Structure Based Interpretable Framework for Representation Learning of Natural Products
2025-Dec-02, Analytical chemistry
IF:6.7Q1
DOI:10.1021/acs.analchem.5c03958
PMID:41201272
|
研究论文 | 本文提出了一种基于元结构的可解释框架MSformer,用于自然产物的表示学习,以解决其结构复杂性和数据稀缺性问题 | MSformer通过质谱启发的元结构碎片化算法,在有限自然产物数据集上进行预训练,实现了对自然产物结构丰富性和药物相关性的高效捕获,并提供了层次化可解释性 | 预训练仅基于40万个自然产物数据,可能无法覆盖所有自然产物结构多样性 | 开发一种用于自然产物表示学习的深度学习框架,以促进药物发现 | 自然产物及其化学结构 | 自然语言处理 | NA | 质谱启发的碎片化算法 | Transformer | 化学结构数据 | 40万个自然产物,生成2.34亿个元结构 | NA | Transformer | NA | NA |
| 1816 | 2025-12-03 |
Neural network-driven direct CBCT-based dose calculation for head-and-neck proton treatment planning
2025-Dec-02, Physics in medicine and biology
IF:3.3Q1
DOI:10.1088/1361-6560/ae222a
PMID:41265034
|
研究论文 | 本研究开发并验证了一种基于扩展长短期记忆(xLSTM)神经网络的深度学习方法,用于直接从锥形束计算机断层扫描(CBCT)图像进行质子剂量计算 | 首次将xLSTM神经网络应用于直接CBCT质子剂量计算,通过能量令牌编码和射束视角序列建模捕捉质子剂量沉积模式的空间依赖性,消除了传统校正工作流程 | 研究为回顾性分析,样本量有限(40例患者),且仅针对头颈部癌症进行了验证 | 开发一种准确且高效的直接CBCT质子剂量计算方法,以支持自适应质子治疗计划 | 头颈部癌症患者的配对计划CT图像和治疗CBCT图像 | 医学影像分析 | 头颈部癌症 | 锥形束计算机断层扫描(CBCT),蒙特卡洛(MC)模拟 | xLSTM | 医学影像(CT,CBCT) | 40例头颈部癌症患者的回顾性数据集,包含配对计划CT和治疗CBCT图像;训练使用82,500个配对的质子笔形束配置 | NA | xLSTM | 伽马通过率,平均百分比剂量误差,剂量体积直方图比较,临床靶区V95%差异,危及器官平均剂量差异 | NA |
| 1817 | 2025-12-03 |
Characterizing the Immune Response in Pig-to-Human Heart Xenografts Using a Multimodal Diagnostic System
2025-Dec-02, Circulation
IF:35.5Q1
|
研究论文 | 本研究通过多模态诊断系统,对猪到人心脏异种移植物的免疫反应进行了精确表征 | 首次结合形态学评估、免疫表型分析、超微结构评估、自动定量多重免疫荧光染色和基因表达谱分析,对猪到人心脏异种移植物的异种免疫反应进行多模态表型分析 | 研究仅基于两个异种移植物样本,样本量较小,且仅在再灌注后66小时进行分析,可能未捕捉到免疫反应的长期动态 | 精确表征猪到人心脏异种移植物中的异种免疫反应和损伤 | 从10基因编辑猪移植到脑死亡人类受体的两个心脏异种移植物 | 数字病理学 | 心血管疾病 | 多重免疫荧光染色, 基因表达谱分析 | 深度学习 | 图像, 基因表达数据 | 两个心脏异种移植物样本,以及作为对照的植入前异种移植物和野生型猪心脏(包括有/无缺血/再灌注损伤和脑死亡) | NA | NA | NA | NA |
| 1818 | 2025-12-03 |
JASPAR 2026: expansion of transcription factor binding profiles and integration of deep learning models
2025-Dec-02, Nucleic acids research
IF:16.6Q1
DOI:10.1093/nar/gkaf1209
PMID:41325984
|
研究论文 | 本文介绍了JASPAR数据库2026版本的更新内容,包括扩展转录因子结合谱、整合深度学习模型以及提供新的注释工具 | 首次在JASPAR数据库中整合深度学习模型集合,包含1259个基于ENCODE ChIP-seq数据训练的BPNet模型,实现了从传统位置频率矩阵向深度学习建模的范式转变 | 深度学习模型目前仅基于人类ENCODE ChIP-seq数据集训练,尚未扩展到其他物种 | 扩展和更新转录因子结合谱数据库,整合深度学习模型以改进TF-DNA相互作用的建模与表征 | 转录因子DNA结合谱、深度学习模型、调控序列模拟 | 生物信息学 | NA | ChIP-seq、深度学习建模 | BPNet | DNA序列数据、ChIP-seq数据 | 240个人类转录因子的ENCODE ChIP-seq数据集 | NA | BPNet | NA | NA |
| 1819 | 2025-12-03 |
Comparing deep learning CNN method with traditional MRI-based hippocampal segmentation and volumetry for early Alzheimer's disease diagnosis across diverse populations
2025-Dec-02, Scientific reports
IF:3.8Q1
DOI:10.1038/s41598-025-29366-8
PMID:41326490
|
NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
| 1820 | 2025-12-03 |
3D Automated Segmentation of Bronchial Abnormalities on Ultrashort Echo Time MRI: A Quantitative MR Outcome in Cystic Fibrosis
2025-Dec-02, Journal of magnetic resonance imaging : JMRI
IF:3.3Q1
DOI:10.1002/jmri.70196
PMID:41328895
|
研究论文 | 开发了一种基于深度学习的系统,用于在超短回波时间MRI上自动分割囊性纤维化支气管异常,并评估其在临床治疗监测中的相关性 | 首次将深度学习应用于超短回波时间MRI上囊性纤维化支气管异常的自动分割,并验证了其在CFTR调节剂治疗监测中的临床价值 | 研究为回顾性设计,样本量有限,且依赖于专家精修分割作为金标准 | 开发一个深度学习系统,用于在超短回波时间MRI上分割囊性纤维化支气管异常,并评估其临床相关性 | 囊性纤维化患者的支气管异常,包括支气管扩张、管壁增厚和黏液 | 数字病理学 | 囊性纤维化 | 超短回波时间MRI | CNN | 3D MRI图像 | 166名囊性纤维化患者,包括训练集97例、测试集25例和独立临床验证队列44例 | NA | RiSeNet | 归一化表面Dice, 中心线Dice | NA |