本数据库通过收集和整理最新科研文献信息而得,供了解领域前沿进展之用。数据源自 PubMed Data ,每日自动更新(使用关键词“['deep learning']”过滤),已收录文献数量参见 统计表格。表格内容由 GPT 自动整理,可能存在错误或遗漏,请使用时务必注意核实!
如有建议或合作意向,欢迎联系 linlin.yan(AT)bioinfo.app 或 微信 yanlinlin82。本项目遵循 MIT 许可 发布,欢迎下载 源码 自行修改使用。如觉得不错,还请不吝 给我打赏,你的支持是我继续创新的重要动力!


除通过在线浏览外,为方便用户离线查阅,本站也提供 付费下载(定价19.9元)。之所以考虑收费,是因为批量扫描这些文献并整理也是有一定成本的,还请理解并多多支持。本站数据会持续更新,而仅需一次付费,未来就可以随时重新下载到最新版本数据。
| 序号 | 推送日期 | 文章 | 类型 | 简述 | 创新点 | 不足 | 研究目的 | 研究对象 | 领域 | 病种 | 技术 | 模型 | 数据类型 | 样本量 | 算法框架 | 模型架构 | 性能指标 | 计算资源 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 18181 | 2025-10-07 |
Contrastive learning with transformer for adverse endpoint prediction in patients on DAPT post-coronary stent implantation
2024, Frontiers in cardiovascular medicine
IF:2.8Q2
DOI:10.3389/fcvm.2024.1460354
PMID:39872877
|
研究论文 | 提出一种基于对比学习和Transformer的模型,用于预测冠状动脉支架植入术后接受双抗血小板治疗患者的不良事件风险 | 首次将对比学习与Transformer架构结合用于DAPT不良事件预测,通过最大化类内相似性和区分类间差异优化预测性能 | 使用回顾性真实世界数据,可能存在选择偏倚;模型性能需在前瞻性研究中进一步验证 | 提高冠状动脉支架植入术后患者双抗血小板治疗不良事件的预测准确性 | 接受药物洗脱支架植入的成年患者 | 医疗人工智能 | 心血管疾病 | 深度学习 | Transformer, 自编码器, 对比学习 | 临床电子健康记录 | 19,713名成年患者 | NA | Transformer, 自编码器 | 时间依赖性一致性指数(Ctd-index) | NA |
| 18182 | 2025-10-07 |
Deep learning-based motion tracking using ultrasound images
2021-Dec, Medical physics
IF:3.2Q1
DOI:10.1002/mp.15321
PMID:34724712
|
研究论文 | 本研究开发了一种基于深度学习的超声图像运动跟踪方法,用于放射治疗中的实时运动跟踪 | 提出了一种基于生成对抗网络的马尔可夫式网络结构,能够从序列超声图像中提取特征并估计变形矢量场 | 研究仅使用了公开数据集进行验证,未在真实临床环境中进行大规模测试 | 开发用于放射治疗中实时运动跟踪的深度学习算法 | 超声图像序列中的解剖标志点运动 | 计算机视觉 | 肿瘤治疗 | 超声成像 | GAN | 2D和3D超声图像序列 | CLUST数据集:63个2D序列(42名受试者)和22个3D序列(18名受试者);CAMUS数据集:450名患者的2D超声图像 | NA | 马尔可夫式网络 | 跟踪误差 | NA |
| 18183 | 2025-10-07 |
Fully automated segmentation of brain tumor from multiparametric MRI using 3D context deep supervised U-Net
2021-Aug, Medical physics
IF:3.2Q1
DOI:10.1002/mp.15032
PMID:34101845
|
研究论文 | 开发基于3D上下文深度监督U-Net的全自动脑肿瘤分割方法 | 提出上下文块聚合多尺度上下文信息,扩大卷积神经网络的有效感受野 | NA | 实现脑肿瘤MR图像的自动分割 | 脑肿瘤亚区域 | 医学图像分析 | 脑肿瘤 | 多参数MRI | CNN | MR图像 | BraTS 2020训练数据集(五折交叉验证)和测试数据集 | NA | U-Net | Dice相似系数, Hausdorff距离, Bland-Altman图, Pearson分析 | NA |
| 18184 | 2025-10-07 |
High through-plane resolution CT imaging with self-supervised deep learning
2021-07-14, Physics in medicine and biology
IF:3.3Q1
DOI:10.1088/1361-6560/ac0684
PMID:34049297
|
研究论文 | 提出一种自监督深度学习工作流程,用于合成高平面分辨率CT图像 | 该工作流程是自监督的,不依赖真实CT图像训练网络,并证实了平面内高分辨率信息可以指导平面间高分辨率生成的假设 | 研究中仅针对头颈癌和肺癌患者的CT图像进行了验证,样本量相对有限 | 提高放射治疗计划中CT图像的平面分辨率 | 头颈癌患者和肺癌患者的CT图像 | 医学影像处理 | 头颈癌, 肺癌 | CT成像 | 深度学习 | CT图像 | 75例头颈癌患者(1mm层厚)和20例肺癌患者(3mm层厚)的200张CT图像 | NA | NA | 平均绝对误差, 边缘保持指数, 结构相似性指数, 信息保真度准则, 像素域视觉信息保真度 | NA |
| 18185 | 2025-10-07 |
Learning-based dose prediction for pancreatic stereotactic body radiation therapy using dual pyramid adversarial network
2021-06-21, Physics in medicine and biology
IF:3.3Q1
DOI:10.1088/1361-6560/ac0856
PMID:34087807
|
研究论文 | 本研究开发了一种基于双金字塔对抗网络的深度学习模型,用于胰腺癌立体定向放射治疗剂量预测 | 提出了结合CT特征金字塔网络、轮廓特征金字塔网络、晚期融合网络和对抗网络的新型双金字塔网络架构 | 研究样本量相对有限,仅包含50例患者数据 | 探索深度学习在胰腺癌立体定向放射治疗剂量预测任务中的可行性 | 胰腺癌患者立体定向放射治疗计划 | 医学影像分析 | 胰腺癌 | 立体定向放射治疗(SBRT) | 深度学习 | CT影像和轮廓数据 | 50例患者(30例用于交叉验证,20例用于保留测试) | NA | 双金字塔网络(DPN), 3D U-Net | 平均绝对误差, 梯度差异误差, 直方图匹配, 对抗损失, 剂量体积参数, 配对t检验, 相关系数 | NA |
| 18186 | 2025-10-07 |
Head and neck multi-organ segmentation on dual-energy CT using dual pyramid convolutional neural networks
2021-05-20, Physics in medicine and biology
IF:3.3Q1
DOI:10.1088/1361-6560/abfce2
PMID:33915524
|
研究论文 | 提出一种基于双金字塔卷积神经网络的头颈部双能CT多器官自动分割方法 | 采用双金字塔网络分别学习低能和高能CT特征,通过深度注意力机制融合特征,并在Mask R-CNN框架中集成掩码评分子网络以建立器官类别与分割形状的关联 | 对小尺寸低对比度器官(如视交叉、耳蜗等)的分割性能仍有提升空间(DSC 0.5-0.8) | 开发头颈部双能CT的自动多器官分割方法 | 头颈部癌症患者的19个器官 | 计算机视觉 | 头颈部癌症 | 双能CT | CNN, R-CNN | CT图像 | 127名头颈部癌症患者(66名训练,61名测试) | PyTorch, TensorFlow | Mask R-CNN, 双金字塔卷积神经网络 | Dice相似系数, 95% Hausdorff距离 | NA |
| 18187 | 2025-10-07 |
Synthetic dual-energy CT for MRI-only based proton therapy treatment planning using label-GAN
2021-03-09, Physics in medicine and biology
IF:3.3Q1
DOI:10.1088/1361-6560/abe736
PMID:33596558
|
研究论文 | 本研究提出一种基于标签生成对抗网络的深度学习模型,从MRI生成合成双能CT用于质子治疗计划中的阻止本领比计算 | 提出新型标签生成对抗网络模型,不仅能判别合成双能CT的真实性,还能区分双能CT中的高能和低能CT,更准确地建模两者间的对比度差异 | 研究仅基于57例头颈癌患者数据验证,样本量相对有限 | 开发MRI-only质子治疗计划方法,通过生成合成双能CT来准确计算阻止本领比 | 头颈癌患者的双能CT和MRI影像数据 | 医学影像分析 | 头颈癌 | 双能CT, MRI | GAN | 医学影像 | 57例头颈癌患者的双能CT和MRI配对数据 | NA | 标签生成对抗网络 | 平均绝对误差, 归一化平均绝对误差 | NA |
| 18188 | 2025-10-07 |
Deep learning-based real-time volumetric imaging for lung stereotactic body radiation therapy: a proof of concept study
2020-12-18, Physics in medicine and biology
IF:3.3Q1
DOI:10.1088/1361-6560/abc303
PMID:33080578
|
研究论文 | 本研究提出一种基于生成对抗网络的实时三维成像方法,用于肺部立体定向放射治疗中的运动管理 | 提出集成感知监督的生成对抗网络TransNet,可从单张二维投影实时生成三维图像,并引入特征空间感知损失以提升肺部边界准确性 | 概念验证研究,仅基于20例患者数据进行模拟验证,尚未进行临床实时应用 | 开发实时三维成像技术以提升肺部立体定向放射治疗的精准运动管理 | 接受肺部立体定向放射治疗的患者 | 医学影像分析 | 肺癌 | 4D-CT模拟 | GAN | CT图像 | 20例患者病例,包含9个呼吸时相的三维CT图像及对应二维投影数据 | NA | TransNet(包含编码、转换和解码三个模块) | 平均绝对误差, 峰值信噪比, 结构相似性指数, 质心距离 | NA |
| 18189 | 2025-01-29 |
Emotion analysis of EEG signals using proximity-conserving auto-encoder (PCAE) and ensemble techniques
2025-Dec, Cognitive neurodynamics
IF:3.1Q2
DOI:10.1007/s11571-024-10187-w
PMID:39866661
|
研究论文 | 本文提出了一种基于EEG信号的创新框架——邻近保持自编码器(PCAE),用于准确识别情绪,并解决了传统情绪分析技术面临的挑战 | 提出了邻近保持自编码器(PCAE)和邻近保持压缩激励自编码器(PC-SEAE)模型,结合了多种卷积和反卷积层以及局部邻近保持层,显著提高了情绪识别的准确性 | 未提及样本量的具体限制或数据集的多样性问题 | 开发一种基于EEG信号的准确情绪识别系统,以改善脑机接口(BCI)在医疗、教育等领域的应用 | EEG信号 | 脑机接口 | 自闭症或情绪障碍 | EEG信号分析 | PCAE, PC-SEAE, SVM, RF, LSTM | EEG信号 | 使用EEG Brainwave数据集,未提及具体样本量 | NA | NA | NA | NA |
| 18190 | 2025-01-29 |
Using three-dimensional fluorescence spectroscopy and machine learning for rapid detection of adulteration in camellia oil
2025-Mar-15, Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy
DOI:10.1016/j.saa.2024.125524
PMID:39671816
|
研究论文 | 本研究利用三维荧光光谱和机器学习技术快速检测山茶油的掺假情况 | 结合三维荧光光谱和并行因子分析(PARAFAC)方法,采用优化的CaoCNN模型在掺假油检测中表现出色,准确率达到97.78% | 传统机器学习方法在单一和二元掺假油的分类中存在局限性 | 识别山茶油的真伪 | 山茶油及其掺假油 | 机器学习 | NA | 三维荧光光谱,并行因子分析(PARAFAC) | PLS-DA, KNN, SVM, RF, CNN | 光谱数据 | NA | NA | NA | NA | NA |
| 18191 | 2024-12-18 |
Ultra-fast prediction of D-π-A organic dye absorption maximum with advanced ensemble deep learning models
2025-Mar-15, Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy
DOI:10.1016/j.saa.2024.125536
PMID:39681030
|
研究论文 | 本文介绍了一种基于深度学习集成方法的超快速预测D-π-A有机染料吸收最大值的新方法 | 本文提出了一种利用高级集成深度学习模型,结合daylight指纹作为化学描述符,快速预测D-π-A有机染料在不同溶剂中的吸收最大值,显著提高了预测精度和计算效率 | NA | 快速准确地预测D-π-A有机染料在不同溶剂中的吸收最大值,以促进染料敏化太阳能电池及相关技术的高效设计 | D-π-A有机染料在18种不同溶剂环境中的吸收最大值 | 机器学习 | NA | 深度学习 | 集成模型(包括卷积网络等多种神经架构) | 分子描述符(有机染料指纹) | 18种不同溶剂环境中的D-π-A有机染料 | NA | NA | NA | NA |
| 18192 | 2025-01-29 |
Synergistic effect evaluation method of atmospheric emission reduction based on deep learning fusion model
2025-Feb-15, Journal of hazardous materials
IF:12.2Q1
DOI:10.1016/j.jhazmat.2024.136709
PMID:39637781
|
研究论文 | 本文提出了一种基于深度学习融合模型的大气减排协同效应评估方法,旨在模拟排放对空气质量的影响 | 开发了一种新的深度学习融合模型GR-BILSTM,结合生成对抗网络进行数据增强和ResNet-BILSTM模型,有效解决了深度网络中的梯度消失问题,并捕捉高维数据特征,提高了模型的预测精度 | 未提及具体的数据集规模或实验验证的局限性 | 评估大气减排的协同效应,模拟排放对空气质量的影响 | 工业园区的排放与空气污染之间的关系 | 机器学习 | NA | 深度学习 | GR-BILSTM(生成对抗网络与ResNet-BILSTM融合模型) | 空气质量数据 | 未提及具体样本数量 | NA | NA | NA | NA |
| 18193 | 2024-12-22 |
Online monitoring of Haematococcus lacustris cell cycle using machine and deep learning techniques
2025-Feb, Bioresource technology
IF:9.7Q1
DOI:10.1016/j.biortech.2024.131976
PMID:39675638
|
研究论文 | 本研究开发了一种自动化在线监测系统,用于分类Haematococcus lacustris细胞周期的四个不同阶段 | 本研究首次将基于决策树的机器学习和深度学习卷积神经网络算法应用于Haematococcus lacustris细胞周期的在线监测 | 本研究仅在实验室规模的培养系统中验证了模型的有效性,尚未在大规模工业应用中进行测试 | 开发一种在线监测系统,用于优化从Haematococcus lacustris中生产虾青素的工艺 | Haematococcus lacustris细胞周期 | 机器学习 | NA | 卷积神经网络 | CNN | 图像 | NA | NA | NA | NA | NA |
| 18194 | 2025-01-29 |
Deep Drug-Target Binding Affinity Prediction Base on Multiple Feature Extraction and Fusion
2025-Jan-21, ACS omega
IF:3.7Q2
DOI:10.1021/acsomega.4c08048
PMID:39866608
|
研究论文 | 本文提出了一种基于多特征提取和融合的深度药物-靶标结合亲和力预测模型BTDHDTA,旨在提高药物发现中的预测准确性 | BTDHDTA模型通过双向门控循环单元(GRU)、Transformer编码器和扩张卷积提取药物和靶标的全局、局部及其相关性特征,并引入结合卷积神经网络和高速公路连接的模块来融合药物和蛋白质的深层特征 | 模型在特征提取和融合过程中可能仍存在一定的计算复杂性和数据依赖性 | 提高药物-靶标结合亲和力(DTA)预测的准确性,以促进药物发现 | 药物和靶标数据 | 机器学习 | NA | 深度学习 | BTDHDTA(结合GRU、Transformer编码器、扩张卷积和CNN的模型) | 序列数据 | 三个基准数据集(Davis、KIBA和Metz)以及3137种FDA批准药物与SARS-CoV-2复制相关蛋白的结合亲和力预测 | NA | NA | NA | NA |
| 18195 | 2025-01-28 |
Plant Detection in RGB Images from Unmanned Aerial Vehicles Using Segmentation by Deep Learning and an Impact of Model Accuracy on Downstream Analysis
2025-Jan-20, Journal of imaging
IF:2.7Q3
DOI:10.3390/jimaging11010028
PMID:39852341
|
研究论文 | 本文提出了一种基于深度学习的图像分割方法,用于从无人机获取的图像中检测五种植物,并探讨了模型精度对后续分析的影响 | 通过结合无人机图像和深度学习算法,提出了一种新的植物检测方法,并分析了模型精度对纹理特征估计的影响 | 不同分辨率和标记质量的图像对模型性能的影响可能导致对田间种植模式特性的错误结论 | 提高无人机图像中植物检测的准确性,并评估其对后续纹理特征分析的影响 | 五种植物 | 计算机视觉 | NA | 深度学习 | 卷积神经网络(CNN) | 图像 | 12个正射影像和17个来自Roboflow服务的数据集 | NA | NA | NA | NA |
| 18196 | 2025-01-28 |
Deep Learning in Oral Hygiene: Automated Dental Plaque Detection via YOLO Frameworks and Quantification Using the O'Leary Index
2025-Jan-20, Diagnostics (Basel, Switzerland)
DOI:10.3390/diagnostics15020231
PMID:39857115
|
研究论文 | 本研究利用先进的YOLO架构自动检测牙菌斑的三个阶段(新、成熟和过度成熟),并通过O'Leary指数进行量化,以增强早期干预并减少对人工视觉评估的依赖 | 首次将YOLOv9、YOLOv10和YOLOv11等YOLO架构应用于牙菌斑检测,并在不同成像条件下验证了其可行性 | 研究样本量较小(177人),且仅使用了RGB图像,未涉及其他类型的医学影像数据 | 通过自动检测牙菌斑阶段,优化临床工作流程,支持早期诊断,并减轻低资源社区的口腔健康负担 | 牙菌斑的三个阶段(新、成熟和过度成熟) | 计算机视觉 | 口腔疾病 | YOLO架构 | YOLOv9, YOLOv10, YOLOv11 | RGB图像 | 177人,共531张RGB图像 | NA | NA | NA | NA |
| 18197 | 2025-01-29 |
A Feature-Enhanced Small Object Detection Algorithm Based on Attention Mechanism
2025-Jan-20, Sensors (Basel, Switzerland)
DOI:10.3390/s25020589
PMID:39860960
|
研究论文 | 本文提出了一种基于注意力机制的特征增强小目标检测算法,旨在解决无人机图像中小目标检测的挑战 | 使用YOLOv8s作为基础框架,引入多层次特征融合算法和注意力机制,改进小目标特征提取,并采用动态检测头和Slideloss、ShapeIoU等技术提升检测性能 | 未提及算法在极端环境或复杂背景下的表现,也未讨论计算资源消耗和实时性 | 提升无人机图像中小目标检测的准确性和召回率 | 无人机图像中的小目标 | 计算机视觉 | NA | 多层次特征融合算法、注意力机制、动态检测头、Slideloss、ShapeIoU | YOLOv8s | 图像 | VisDrone2019和AI-TODv1.5数据集 | NA | NA | NA | NA |
| 18198 | 2025-01-28 |
Blink Detection Using 3D Convolutional Neural Architectures and Analysis of Accumulated Frame Predictions
2025-Jan-19, Journal of imaging
IF:2.7Q3
DOI:10.3390/jimaging11010027
PMID:39852340
|
研究论文 | 本文提出并比较了用于检测视频帧序列中眨眼的深度学习架构,并提出了结合形态学处理和水域分割的帧预测累加器来检测眨眼及其起止帧 | 提出了两种不同的3D卷积神经网络(简单的3D CNN和3D ResNet)以及结合分类器的3D自编码器,并引入了帧预测累加器结合形态学处理和水域分割的新方法 | 样本量相对较小,仅涉及9名参与者的训练数据和8名参与者的测试数据 | 开发一种有效的眨眼检测方法,用于临床条件和疲劳状态的评估 | 视频帧序列中的眨眼 | 计算机视觉 | NA | 深度学习 | 3D CNN, 3D ResNet, 3D autoencoder | 视频 | 9名参与者的训练数据和8名参与者的测试数据,共162,400帧和1172次眨眼 | NA | NA | NA | NA |
| 18199 | 2025-01-28 |
Deep Learning-Based Glioma Segmentation of 2D Intraoperative Ultrasound Images: A Multicenter Study Using the Brain Tumor Intraoperative Ultrasound Database (BraTioUS)
2025-Jan-19, Cancers
IF:4.5Q1
DOI:10.3390/cancers17020315
PMID:39858097
|
研究论文 | 本研究旨在开发一种基于卷积神经网络(CNN)的模型,用于多中心数据集中的胶质瘤分割,以增强术中超声(ioUS)图像的可解释性 | 利用多中心数据集开发CNN模型进行胶质瘤分割,支持多中心ioUS图像分割的可行性 | 未来工作需增强分割细节并探索实时临床应用 | 开发CNN模型用于胶质瘤分割,以增强术中超声图像的可解释性 | 胶质瘤患者 | 数字病理 | 胶质瘤 | CNN | nnU-Net | 2D图像 | 197名受试者(训练集141名,测试集56名,外部验证集53名) | NA | NA | NA | NA |
| 18200 | 2025-01-28 |
TBF-YOLOv8n: A Lightweight Tea Bud Detection Model Based on YOLOv8n Improvements
2025-Jan-18, Sensors (Basel, Switzerland)
DOI:10.3390/s25020547
PMID:39860916
|
研究论文 | 本文提出了一种基于YOLOv8n改进的轻量级茶叶芽检测模型TBF-YOLOv8n,旨在提高茶叶芽检测的效率和精度 | 通过引入高效的分布式移位卷积(DSConv)改进C2f模块,结合坐标注意力(CA)机制、SIOU_Loss函数和动态样本上采样算子(DySample),显著提升了模型的检测精度和效率 | 未提及模型在实际茶园环境中的泛化能力和对不同光照、遮挡等复杂条件的适应性 | 解决深度学习检测模型计算复杂度高的问题,推动茶叶产业的智能化升级 | 茶叶芽 | 计算机视觉 | NA | 深度学习 | YOLOv8n改进模型(TBF-YOLOv8n) | 图像 | 未明确提及具体样本数量 | NA | NA | NA | NA |