本数据库通过收集和整理最新科研文献信息而得,供了解领域前沿进展之用。数据源自 PubMed Data ,每日自动更新,已收录文献数量参见 统计表格。表格内容由 GPT 自动整理,可能存在错误或遗漏,请使用时务必注意核实!
如有建议或合作意向,欢迎联系 linlin.yan(AT)bioinfo.app 或 微信 yanlinlin82。本项目遵循 MIT 许可 发布,欢迎下载 源码 自行修改使用。如觉得不错,还请不吝 给我打赏,你的支持是我继续创新的重要动力!
除通过在线浏览外,为方便用户离线查阅,本站也提供 付费下载(定价10元)。之所以考虑收费,是因为批量扫描这些文献并整理也是有一定成本的,还请理解并多多支持。本站数据会持续更新,而仅需一次付费,未来就可以随时重新下载到最新版本数据。
序号 | 推送日期 | 文章 | 类型 | 简述 | 创新点 | 不足 | 研究目的 | 研究对象 | 领域 | 病种 | 技术 | 模型 | 数据类型 | 样本量 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
18321 | 2024-08-27 |
Social media text analytics of Malayalam-English code-mixed using deep learning
2022, Journal of big data
IF:8.6Q1
DOI:10.1186/s40537-022-00594-3
PMID:35495077
|
研究论文 | 本文研究了马拉雅拉姆语-英语混合文本的社交媒体文本分析,重点是识别攻击性语言和情感分析 | 提出了一个框架,结合了嵌入方法(Word2Vec和FastText)和深度学习算法(单/双向模型、混合模型和转换器方法),并进行了超参数优化 | 未明确提及 | 旨在提高马拉雅拉姆语-英语混合文本在社交媒体中的处理能力 | 马拉雅拉姆语-英语混合数据集 | 自然语言处理 | NA | 深度学习 | 单/双向模型、混合模型、转换器 | 文本 | FIRE 2020数据集和EACL 2021数据集 |
18322 | 2024-08-27 |
Research on Intelligent Target Tracking Algorithm Based on MDNet under Artificial Intelligence
2022, Computational intelligence and neuroscience
DOI:10.1155/2022/1550543
PMID:35498174
|
研究论文 | 本文介绍了一种基于MDNet的目标跟踪方法,通过引入两种注意力机制来提取和整合更好的特征,并使用案例分区减少跟踪模块的投入和最小化网络大小,以防止结果恶化 | 引入了两种注意力机制来提取和整合更好的特征,并使用案例分区技术来优化网络结构 | 未提及具体的局限性 | 研究基于MDNet的智能目标跟踪算法 | 目标跟踪技术 | 计算机视觉 | NA | 深度学习 | MDNet | 图像 | 未提及具体样本数量 |
18323 | 2024-08-27 |
A deep learning-based segmentation pipeline for profiling cellular morphodynamics using multiple types of live cell microscopy
2021-11-22, Cell reports methods
IF:4.3Q2
DOI:10.1016/j.crmeth.2021.100105
PMID:34888542
|
研究论文 | 本文介绍了一种基于深度学习的分割流程MARS-Net,用于使用多种活细胞显微镜技术对细胞形态动力学进行定量分析 | MARS-Net利用迁移学习和多种显微镜数据,实现了对细胞边缘的高精度定位,相较于仅使用单一显微镜数据集训练的神经网络模型,其边缘定位更为准确 | NA | 开发一种能够从活细胞成像数据中准确分割细胞边缘并量化细胞形态动力学的方法 | 细胞边缘的定位和细胞形态动力学的定量分析 | 计算机视觉 | NA | 深度学习 | U-Net | 图像 | 使用了来自相衬、旋转盘共聚焦和全内反射荧光显微镜的电影数据进行训练 |
18324 | 2024-08-27 |
A weakly supervised deep learning approach for label-free imaging flow-cytometry-based blood diagnostics
2021-10-25, Cell reports methods
IF:4.3Q2
DOI:10.1016/j.crmeth.2021.100094
PMID:35474892
|
研究论文 | 本文介绍了一种弱监督深度学习方法iCellCnn,用于无需标签的基于成像流式细胞术的血液诊断 | iCellCnn能够基于明场成像流式细胞术图像实现Sézary综合征的诊断,且不限于特定疾病的诊断 | 研究样本量较小,仅包括四名健康捐赠者和五名Sézary综合征患者 | 开发一种无需手动标记单细胞图像的弱监督深度学习方法,以促进成像流式细胞术在血液疾病诊断中的应用 | Sézary综合征的诊断 | 机器学习 | 血液疾病 | 成像流式细胞术 | CNN | 图像 | 四名健康捐赠者和五名Sézary综合征患者 |
18325 | 2024-08-27 |
End-to-end robust joint unsupervised image alignment and clustering
2021-Oct, Proceedings. IEEE International Conference on Computer Vision
DOI:10.1109/iccv48922.2021.00383
PMID:35392630
|
研究论文 | 提出了一种名为Jim-Net的多任务模型,能够无监督地同时进行图像对齐和聚类 | Jim-Net是首个能够同时进行图像对齐和聚类的端到端模型,显著提高了单独执行每个任务的性能 | NA | 开发一种能够直接学习图像聚类和对齐的多任务模型 | 图像对齐和聚类 | 计算机视觉 | NA | NA | Jim-Net | 图像 | 在七个数据集上进行了广泛评估 |
18326 | 2024-08-27 |
Convolutional neural networks for high throughput screening of catalyst layer inks for polymer electrolyte fuel cells
2021-Sep-27, RSC advances
IF:3.9Q2
DOI:10.1039/d1ra05324h
PMID:35495497
|
研究论文 | 本文首次应用深度卷积神经网络(ConvNets)于透射电子显微镜图像的高通量筛选催化剂层墨水阶段 | 首次将深度卷积神经网络应用于催化剂层墨水阶段的透射电子显微镜图像高通量筛选 | NA | 加速催化剂层设计和制造的进一步进展 | 聚合物电解质燃料电池的催化剂层墨水 | 机器学习 | NA | 深度学习算法 | CNN | 图像 | NA |
18327 | 2024-08-27 |
Transmol: repurposing a language model for molecular generation
2021-Jul-27, RSC advances
IF:3.9Q2
DOI:10.1039/d1ra03086h
PMID:35479483
|
研究论文 | 本文利用自然语言处理中的transformer架构变体Transmol模型,应用于分子生成任务,并展示了其在生成分子库方面的有效性 | 首次将注意力机制应用于分子生成问题,并开发了一种新的双种子方法,以探索化学空间的未开发区域 | NA | 探索和改进机器学习在分子生成领域的应用 | 分子生成和分子库的构建 | 机器学习 | NA | transformer | transformer | 分子数据 | NA |
18328 | 2024-08-27 |
Deep learning quantified mucus-tumor ratio predicting survival of patients with colorectal cancer using whole-slide images
2021-Mar, Precision clinical medicine
IF:5.1Q1
DOI:10.1093/pcmedi/pbab002
PMID:35693123
|
研究论文 | 本文利用深度学习技术量化结直肠癌患者的粘液-肿瘤比例,并研究其对患者生存率的预测价值 | 首次使用深度学习技术量化粘液比例,并探讨其在结直肠癌中的预后价值 | NA | 量化粘液比例并研究其在结直肠癌患者中的预后价值 | 结直肠癌患者的粘液-肿瘤比例及其预后影响 | 数字病理 | 结直肠癌 | 深度学习 | NA | 图像 | 训练集419例,验证集315例 |
18329 | 2024-08-26 |
An XAI-enhanced efficientNetB0 framework for precision brain tumor detection in MRI imaging
2024-Oct, Journal of neuroscience methods
IF:2.7Q3
DOI:10.1016/j.jneumeth.2024.110227
PMID:39038716
|
研究论文 | 本文提出了一种结合可解释AI技术的EfficientNetB0框架,用于提高MRI图像中脑肿瘤检测的精确度和可解释性 | 本文创新地将可解释AI技术与EfficientNetB0架构结合,提高了脑肿瘤分类的准确性和决策过程的透明度 | NA | 提高MRI图像中脑肿瘤诊断的准确性和可解释性 | 脑肿瘤的分类 | 计算机视觉 | 脑肿瘤 | CNN | EfficientNetB0 | 图像 | 涉及四种脑肿瘤类别(胶质瘤、脑膜瘤、无肿瘤、垂体瘤) |
18330 | 2024-08-26 |
Neuro-XAI: Explainable deep learning framework based on deeplabV3+ and bayesian optimization for segmentation and classification of brain tumor in MRI scans
2024-Oct, Journal of neuroscience methods
IF:2.7Q3
DOI:10.1016/j.jneumeth.2024.110247
PMID:39128599
|
研究论文 | 本文提出了一种基于DeeplabV3+和贝叶斯优化的可解释深度学习框架,用于MRI扫描中脑肿瘤的分割和分类 | 引入贝叶斯优化来调整CNN的超参数,并使用可解释人工智能(XAI)工具提供对CNN评估的实际解释,以及量化预测中的不确定性 | 实时诊断中基于深度学习的系统的实施仍然罕见,部分原因是这些方法没有量化预测中的不确定性 | 开发一种能够辅助放射科医生进行脑肿瘤诊断的机器学习系统 | 脑肿瘤的分割和分类 | 机器学习 | 脑肿瘤 | 贝叶斯优化 | CNN, SVM | 图像 | 未明确提及具体样本数量 |
18331 | 2024-08-26 |
New liver window width in detecting hepatocellular carcinoma on dynamic contrast-enhanced computed tomography with deep learning reconstruction
2024-Sep, Radiological physics and technology
IF:1.7Q3
DOI:10.1007/s12194-024-00817-7
PMID:38837119
|
研究论文 | 本研究探讨了调整窗口宽度(WW)对深度学习重建(DLR)CT图像中肝细胞癌(HCC)检测的影响 | 发现最优WW为120 HU,相比传统WW(150 HU)显著提高了HCC的检测性能 | 研究为回顾性,样本量较小,仅包括35名患者 | 研究调整WW对DLR CT图像中HCC检测的影响 | 肝细胞癌(HCC)的检测 | 计算机视觉 | 肝癌 | 深度学习重建(DLR) | NA | 图像 | 35名患者 |
18332 | 2024-08-26 |
Enhancing colorectal cancer histology diagnosis using modified deep neural networks optimizer
2024-08-22, Scientific reports
IF:3.8Q1
DOI:10.1038/s41598-024-69193-x
PMID:39174564
|
研究论文 | 本文提出了一种改进的Adagrad优化器SAdagrad,用于提高卷积神经网络在结直肠癌病理诊断中的性能 | SAdagrad优化器避免了传统Adagrad在调整学习率方面的缺点,结合微调技术和权重衰减技术,提高了模型的准确性和稳定性 | NA | 提高结直肠癌病理诊断的准确性 | 结直肠癌病理图像 | 计算机视觉 | 结直肠癌 | 卷积神经网络 | CNN | 图像 | Kather结直肠癌病理数据集 |
18333 | 2024-08-26 |
A veracity dissemination consistency-based few-shot fake news detection framework by synergizing adversarial and contrastive self-supervised learning
2024-Aug-22, Scientific reports
IF:3.8Q1
DOI:10.1038/s41598-024-70039-9
PMID:39174581
|
研究论文 | 本文提出了一种基于半监督对抗学习和自监督对比学习的新型少样本假新闻检测框架DetectYSF,通过协同对比自监督学习和对抗半监督学习,实现有限监督数据下的准确高效假新闻检测 | DetectYSF框架结合了自监督对比学习和对抗半监督学习,通过邻近子图特征聚合算法引入新闻真实性传播一致性的外部监督信号,提高了假新闻检测的准确性 | NA | 开发和增强面向数据稀缺场景的假新闻检测方法 | 假新闻检测 | 自然语言处理 | NA | Transformer, 生成对抗网络(GAN), 多层感知机(MLP) | BERT, RoBERTa | 文本 | 有限监督数据 |
18334 | 2024-08-26 |
Infection Inspection: using the power of citizen science for image-based prediction of antibiotic resistance in Escherichia coli treated with ciprofloxacin
2024-08-22, Scientific reports
IF:3.8Q1
DOI:10.1038/s41598-024-69341-3
PMID:39174600
|
研究论文 | 本研究利用公民科学和图像特征分析来评估大肠杆菌对抗生素环丙沙星的耐药性 | 通过公民科学项目收集大量图像分类数据,并结合深度学习模型进行分析,以提高诊断方法的鲁棒性 | 用户图像分类准确率(66.8%)低于深度学习模型(75.3%),且在细胞特征与预期响应不一致时分类错误较多 | 开发快速诊断工具以应对抗生素耐药性的全球健康挑战 | 大肠杆菌对抗生素环丙沙星的耐药性 | 计算机视觉 | NA | 图像特征分析 | 深度学习模型 | 图像 | 5273名志愿者对来自五种大肠杆菌菌株的1,045,199张单细胞图像进行分类 |
18335 | 2024-08-26 |
Artificial intelligence in COPD CT images: identification, staging, and quantitation
2024-Aug-22, Respiratory research
IF:4.7Q1
DOI:10.1186/s12931-024-02913-z
PMID:39174978
|
综述 | 本文综述了人工智能(AI)在慢性阻塞性肺病(COPD)CT影像中的应用,包括识别、分期和量化 | 强调了AI在COPD诊断和管理中的创新应用,特别是在机器学习和深度学习方面 | 讨论了数据复杂性和AI在临床环境中整合的挑战 | 旨在全面理解AI在COPD诊断和管理中的当前状态和未来潜力 | COPD的识别、分期和影像表型 | 计算机视觉 | 慢性阻塞性肺病 | 机器学习, 深度学习 | NA | 影像 | NA |
18336 | 2024-08-26 |
Super-resolution reconstruction for early cervical cancer magnetic resonance imaging based on deep learning
2024-Aug-22, Biomedical engineering online
IF:2.9Q3
DOI:10.1186/s12938-024-01281-5
PMID:39175006
|
研究论文 | 本研究旨在开发一种专门针对早期宫颈癌磁共振成像图像质量和高分辨率增强的超分辨率算法 | 采用创新的SR算法,结合复杂架构和深度卷积核,通过多输入模型训练匹配的输入图像对,显著提高了图像质量和分辨率 | NA | 开发适用于早期宫颈癌磁共振成像的超分辨率算法,以提高图像质量和分辨率 | 早期宫颈癌磁共振成像图像 | 计算机视觉 | 宫颈癌 | 深度学习 | CNN | 图像 | 两个不同放大因子的独立数据集 |
18337 | 2024-08-26 |
A hybrid deep learning approach to solve optimal power flow problem in hybrid renewable energy systems
2024-Aug-21, Scientific reports
IF:3.8Q1
DOI:10.1038/s41598-024-69483-4
PMID:39169061
|
研究论文 | 本文提出了一种结合深度强化学习与量子启发遗传算法的新型混合模型,用于解决混合可再生能源系统中的最优潮流问题 | 该研究引入深度强化学习与量子启发遗传算法的结合,有效提高了全局搜索能力和适应实时环境的能力 | 文章未明确提及具体限制 | 确保电压稳定性,最小化功率损耗和燃料成本 | 混合可再生能源系统中的最优潮流问题 | 机器学习 | NA | 深度强化学习 | DRL-QIGA | 系统数据 | 使用修改后的IEEE 30总线系统进行实验评估 |
18338 | 2024-08-26 |
Context-embedded hypergraph attention network and self-attention for session recommendation
2024-Aug-21, Scientific reports
IF:3.8Q1
DOI:10.1038/s41598-024-66349-7
PMID:39169084
|
研究论文 | 本文提出了一种名为C-HAN的新型会话推荐模型,该模型包含上下文嵌入的超图注意力网络和自注意力两个并行模块,旨在捕捉项目间的内在一致性和顺序依赖性 | C-HAN模型引入了不同类型的交互上下文以增强模型的上下文感知能力,并通过软注意力机制有效整合两种类型的信息 | NA | 解决会话推荐中用户意图建模的挑战,特别是在短历史序列中有限证据的情况下 | 会话推荐中的用户意图建模 | 机器学习 | NA | 超图注意力网络,自注意力机制 | C-HAN | 序列数据 | 三个真实世界数据集 |
18339 | 2024-08-26 |
Phosphorus prediction in the middle reaches of the Yangtze river based on GRA-CEEMDAN-CNLSTM-DBO
2024-Aug-21, Scientific reports
IF:3.8Q1
DOI:10.1038/s41598-024-70262-4
PMID:39169112
|
研究论文 | 本研究通过集成先进的建模技术,旨在提高长江中游总磷(TP)浓度的预测准确性 | 提出了GRA-CEEMDAN-CN1D-LSTM-DBO模型,该模型在预测TP浓度方面显著优于传统的BP、LSTM和GRU模型 | 随着与大坝距离的增加,预测精度逐渐下降,表明三峡大坝运营对下游TP浓度的影响减弱 | 提高长江中游总磷浓度的预测准确性,为洪水季节的动态水位控制提供有价值的见解 | 长江中游的总磷浓度 | 机器学习 | NA | Grey Relational Analysis (GRA) | CN1D-LSTM-DBO | 水质量参数数据 | 使用了三峡水库(TGR)的运营和排放数据,以及下游河段的水质参数 |
18340 | 2024-08-26 |
A comparison between machine and deep learning models on high stationarity data
2024-Aug-21, Scientific reports
IF:3.8Q1
DOI:10.1038/s41598-024-70341-6
PMID:39169110
|
研究论文 | 本文比较了机器学习和深度学习模型在高度平稳数据上的性能,特别是预测意大利收费站车辆通过数量的情况 | 研究发现某些机器学习算法在时间序列特征识别和预测准确性上优于深度学习模型 | NA | 研究时间序列特征,并比较机器学习和深度学习模型在预测任务上的表现 | 预测意大利收费站车辆通过数量 | 机器学习 | NA | 支持向量机、随机森林、极端梯度提升(XGBoost)、循环神经网络与长短期记忆(RNN-LSTM) | RNN-LSTM | 时间序列数据 | 8766行数据,6列相关收费站信息 |