本数据库通过收集和整理最新科研文献信息而得,供了解领域前沿进展之用。数据源自 PubMed Data ,每日自动更新,已收录文献数量参见 统计表格。表格内容由 GPT 自动整理,可能存在错误或遗漏,请使用时务必注意核实!
如有建议或合作意向,欢迎联系 linlin.yan(AT)bioinfo.app 或 微信 yanlinlin82。本项目遵循 MIT 许可 发布,欢迎下载 源码 自行修改使用。如觉得不错,还请不吝 给我打赏,你的支持是我继续创新的重要动力!
除通过在线浏览外,为方便用户离线查阅,本站也提供 付费下载(定价10元)。之所以考虑收费,是因为批量扫描这些文献并整理也是有一定成本的,还请理解并多多支持。本站数据会持续更新,而仅需一次付费,未来就可以随时重新下载到最新版本数据。
序号 | 推送日期 | 文章 | 类型 | 简述 | 创新点 | 不足 | 研究目的 | 研究对象 | 领域 | 病种 | 技术 | 模型 | 数据类型 | 样本量 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1841 | 2025-06-23 |
A Convolutional Neural Network for Automated Detection of Cervical Ossification of the Posterior Longitudinal Ligament using Magnetic Resonance Imaging
2024-04-01, Clinical spine surgery
IF:1.6Q3
DOI:10.1097/BSD.0000000000001547
PMID:37941120
|
研究论文 | 开发并验证了一个基于卷积神经网络(CNN)的模型,用于通过磁共振成像(MRI)自动检测颈椎后纵韧带骨化(OPLL) | 首次尝试开发深度学习模型用于MRI图像中颈椎OPLL的检测 | 回顾性研究设计可能限制了结果的普遍性 | 区分颈椎OPLL和多节段退变性椎管狭窄 | 颈椎OPLL和退变性椎管狭窄患者 | 数字病理 | 颈椎病 | MRI | CNN(ResNet34, ResNet50, ResNet101) | 图像 | 684例(272例OPLL和412例退变性患者) |
1842 | 2025-06-23 |
Distinct chemical environments in biomolecular condensates
2024-Mar, Nature chemical biology
IF:12.9Q1
DOI:10.1038/s41589-023-01432-0
PMID:37770698
|
research paper | 该研究探讨了无膜生物分子凝聚体中不同化学环境对分子选择性分布的影响 | 利用小分子探针揭示不同凝聚体具有独特的化学溶解特性,并通过深度学习预测探针在凝聚体中的选择性分配 | 未具体说明实验所用凝聚体类型和数量的局限性 | 研究无膜生物分子凝聚体中化学环境对分子分布的调控机制 | 生物分子凝聚体和小分子探针 | machine learning | NA | 深度学习 | deep learning | 化学探针数据 | NA |
1843 | 2025-06-23 |
Crossing the 'Cookie Theft' Corpus Chasm: Applying what BERT Learns from Outside Data to the ADReSS Challenge Dementia Detection Task
2021-Apr, Frontiers in computer science
IF:2.4Q3
DOI:10.3389/fcomp.2021.642517
PMID:40535703
|
research paper | 该研究探讨了如何利用外部数据提升深度学习模型在ADReSS挑战赛中的痴呆检测任务性能 | 通过整合Wisconsin Longitudinal Study (WLS)的新语料库,显著增加了训练数据量,并探索了基于推断认知状态选择规范数据的方法 | WLS转录本的元数据中缺乏痴呆诊断信息,需依赖认知测试结果推断认知状态 | 提升深度学习模型在阿尔茨海默病(AD)患者语言特征分类中的性能 | 阿尔茨海默病患者和健康对照者的自发语音样本 | natural language processing | geriatric disease | BERT模型 | BERT | text | 1366份来自WLS的Cookie Theft Task转录本,加上DementiaBank的数据 |
1844 | 2025-06-22 |
MBRSTCformer: a knowledge embedded local-global spatiotemporal transformer for emotion recognition
2025-Dec, Cognitive neurodynamics
IF:3.1Q2
DOI:10.1007/s11571-025-10277-3
PMID:40538970
|
research paper | 提出了一种名为MBRSTCformer的知识嵌入局部-全局时空变换器,用于基于EEG的情绪识别 | 结合大脑认知机制,提出了多脑区协作网络和级联金字塔空间融合时间卷积网络,以更好地提取脑区局部特征 | NA | 开发一种鲁棒的基于EEG的情绪识别模型 | EEG信号 | machine learning | NA | EEG | transformer (MBRSTCformer), CNN | EEG信号 | 两个主流情绪识别数据集(DEAP和DREAMER) |
1845 | 2025-06-22 |
Artificial intelligence entering the pathology arena in oncology: current applications and future perspectives
2025-Jul, Annals of oncology : official journal of the European Society for Medical Oncology
IF:56.7Q1
DOI:10.1016/j.annonc.2025.03.006
PMID:40307127
|
review | 本文综述了人工智能在病理学和肿瘤学领域的当前应用及未来前景,特别是在癌症诊断、预后评估和治疗策略中的作用 | 探讨了AI在肿瘤病理学中的创新应用,包括自动肿瘤检测、分子生物标志物识别以及治疗反应预测,并展望了基础模型和通用模型等AI算法的未来发展 | 目前尚无基于IA或IB级别证据的AI预后或预测性生物标志物,且数据可用性、可解释性和监管问题仍是临床应用的障碍 | 评估AI在癌症病理学中的当前应用并探讨其未来发展方向 | 肿瘤诊断、分子生物标志物检测和癌症预后评估 | digital pathology | oncology | AI-based algorithms, transformer-based deep learning | foundation models, generalist models | image, multi-omics data | NA |
1846 | 2025-06-22 |
Automatic Multi-Task Segmentation and Vulnerability Assessment of Carotid Plaque on Contrast-Enhanced Ultrasound Images and Videos via Deep Learning
2025-Jun-20, IEEE journal of biomedical and health informatics
IF:6.7Q1
DOI:10.1109/JBHI.2025.3581686
PMID:40540369
|
research paper | 提出一种基于深度学习的多任务模型,用于自动分割和分类颈动脉斑块在CEUS图像和视频中的IPN等级 | 开发了一个多任务深度学习模型,用于自动分割和IPN等级分类,并在CEUS图像和视频上表现优于单独训练的模型和部分放射科医生 | 未明确提及具体局限性,但可能包括模型在更广泛数据集上的泛化能力或对高级放射科医生表现的比较不足 | 提升颈动脉斑块易损性评估的自动化和准确性 | 颈动脉斑块在CEUS图像和视频中的IPN等级 | digital pathology | cardiovascular disease | contrast-enhanced ultrasound (CEUS) | multi-task deep learning model | image, video | 未明确提及具体样本数量,但涉及CEUS图像和视频 |
1847 | 2025-06-22 |
Accurate de novo design of high-affinity protein-binding macrocycles using deep learning
2025-Jun-20, Nature chemical biology
IF:12.9Q1
DOI:10.1038/s41589-025-01929-w
PMID:40542165
|
研究论文 | 介绍了一种基于深度学习的去噪扩散管道RFpeptides,用于设计针对特定蛋白质靶点的大环结合物 | 首次提出了一个稳健的从头设计蛋白质结合大环的方法,无需依赖大规模筛选 | 仅测试了四种蛋白质靶点,样本量相对较小 | 开发一种高效且可定制的大环肽设计方法,用于诊断和治疗应用 | 蛋白质靶点和大环结合物 | 机器学习 | NA | 深度学习 | 去噪扩散模型 | 蛋白质结构数据 | 针对四种蛋白质靶点设计了20个或更少的大环结合物 |
1848 | 2025-06-22 |
Deep learning-designed dynamics
2025-Jun-20, Nature chemical biology
IF:12.9Q1
DOI:10.1038/s41589-025-01963-8
PMID:40542166
|
NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
1849 | 2025-06-22 |
A primer on variational inference for physics-informed deep generative modelling
2025-Jun-19, Philosophical transactions. Series A, Mathematical, physical, and engineering sciences
DOI:10.1098/rsta.2024.0324
PMID:40534291
|
review | 本文提供了关于变分推断(VI)在物理信息深度生成建模中的技术介绍,包括其在前向和逆问题中的应用 | 统一并回顾了近期关于VI灵活性的文献,特别强调了其在物理相关问题中的不确定性量化能力 | NA | 解决基于物理的问题,特别强调不确定性量化 | 变分推断(VI)在物理信息深度生成建模中的应用 | machine learning | NA | 变分推断(VI) | deep learning | NA | NA |
1850 | 2025-06-22 |
Quantification of Breast Arterial Calcification in Mammograms Using a UNet-Based Deep Learning for Detecting Cardiovascular Disease
2025-Jun-19, Academic radiology
IF:3.8Q1
DOI:10.1016/j.acra.2025.05.036
PMID:40541546
|
研究论文 | 开发并验证了一种基于U-Net的深度学习模型,用于在乳腺X光片中检测、分割和量化乳腺动脉钙化(BAC),以提高心血管风险评估的筛查准确性 | 采用改进的U-Net架构,结合Hausdorff损失、Dice损失和二元交叉熵(BCE)损失进行分割和量化,显著提高了BAC的检测和量化准确性 | 研究为回顾性研究,样本量相对较小(369名患者),可能影响模型的泛化能力 | 提高乳腺X光片中BAC的检测和量化准确性,以改进心血管风险评估 | 乳腺X光片中的乳腺动脉钙化(BAC) | 数字病理学 | 心血管疾病 | 深度学习 | U-Net | 图像 | 369名患者的乳腺X光片 |
1851 | 2025-06-20 |
Author Correction: Focal liver lesion diagnosis with deep learning and multistage CT imaging
2025-Jun-18, Nature communications
IF:14.7Q1
DOI:10.1038/s41467-025-61097-2
PMID:40533457
|
NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
1852 | 2025-06-22 |
Applying a multi-task and multi-instance framework to predict axillary lymph node metastases in breast cancer
2025-Jun-18, NPJ precision oncology
IF:6.8Q1
DOI:10.1038/s41698-025-00971-0
PMID:40533499
|
research paper | 该研究提出了一种结合多任务学习(MTL)和多实例学习(MIL)的深度学习框架,用于预测乳腺癌患者的腋窝淋巴结转移状态 | 首次将MTL和MIL框架应用于乳腺癌腋窝淋巴结转移预测,模拟真实临床诊断场景,并采用Transformer模型Segformer作为网络骨干 | 未明确说明样本选择的潜在偏差以及模型在其他癌症类型中的泛化能力 | 开发一个能够辅助临床医生评估乳腺癌患者腋窝淋巴结状态的深度学习模型 | 乳腺癌患者的超声图像(原发肿瘤和腋窝淋巴结区域) | digital pathology | breast cancer | deep learning | Segformer (Transformer-based) | ultrasound images | 训练队列和内外测试队列(具体数量未说明) |
1853 | 2025-06-22 |
Quality appraisal of radiomics-based studies on chondrosarcoma using METhodological RadiomICs Score (METRICS) and Radiomics Quality Score (RQS)
2025-Jun-18, Insights into imaging
IF:4.1Q1
DOI:10.1186/s13244-025-02016-3
PMID:40533701
|
研究论文 | 评估基于放射组学的骨软骨肉瘤研究方法学质量,使用METRICS和RQS评分工具 | 首次使用METRICS和RQS评分工具系统评估骨软骨肉瘤放射组学研究的方法学质量 | 纳入研究均为回顾性设计,缺乏前瞻性研究和基于深度学习的分析 | 评估骨软骨肉瘤放射组学研究的质量并促进临床转化 | 骨软骨肉瘤的放射组学研究 | 数字病理 | 骨软骨肉瘤 | 放射组学分析 | NA | 医学影像(MRI、CT) | 18篇研究论文 |
1854 | 2025-06-22 |
Deep Learning-Enhanced Non-Invasive Detection of Pulmonary Hypertension and Subtypes via Chest Radiographs, Validated by Catheterization
2025-Jun-18, Chest
IF:9.5Q1
DOI:10.1016/j.chest.2025.06.008
PMID:40541737
|
research paper | 该研究开发了深度学习模型CXR-PH-Net和CXR-CHD-PAH-Net,用于通过胸部X光片非侵入性检测肺动脉高压及其亚型 | 利用深度学习技术从常规胸部X光片中检测肺动脉高压及其亚型,为资源有限地区提供了可及的诊断工具 | 需要在更多样化的人群中进行进一步验证以提高临床普适性 | 开发非侵入性、准确的肺动脉高压及其亚型诊断工具 | 肺动脉高压患者及其亚型先天性心脏病相关肺动脉高压患者 | digital pathology | cardiovascular disease | deep learning | CNN | image | 共4,576名患者(2,288例PH病例),包括内部测试集2,140名患者(1,070例PH病例)和外部验证集90名患者 |
1855 | 2025-06-22 |
Hyperspectral-driven PSO-SVM model and optimized CNN-LSTM-Attention fusion network for qualitative and quantitative non-destructive detection of adulteration in strong-aroma Baijiu
2025-Jun-17, Food chemistry
IF:8.5Q1
DOI:10.1016/j.foodchem.2025.145197
PMID:40541145
|
研究论文 | 本研究结合高光谱成像和深度学习技术,用于检测白酒中的掺假行为 | 提出了一种名为Ghost-LSTM-Scaled Dot-Product Attention (GLSNet)的新型融合网络,用于定量预测,其预测性能显著优于传统方法和其他深度学习模型 | NA | 实现白酒掺假的快速准确检测,为质量控制和市场监管提供支持 | 白酒中的掺假样本 | 计算机视觉 | NA | 高光谱成像 | PSO-SVM, CNN, LSTM, GLSNet | 图像 | NA |
1856 | 2025-06-22 |
A Meta-Analysis of the Diagnostic Test Accuracy of Artificial Intelligence for Predicting Emergency Department Revisits
2025-Jun-16, Journal of medical systems
IF:3.5Q2
DOI:10.1007/s10916-025-02210-2
PMID:40522351
|
meta-analysis | 该研究通过荟萃分析评估人工智能在预测急诊科复诊中的诊断测试准确性 | 首次通过荟萃分析量化评估AI在急诊复诊预测中的表现,并识别导致研究间异质性的协变量 | 纳入研究数量有限(20篇),且存在显著的异质性 | 评估AI预测急诊科复诊的性能并分析研究间异质性来源 | 急诊科复诊患者 | machine learning | NA | machine learning, deep learning, artificial intelligence | NA | 临床数据 | 20篇研究(包含27个AI模型) |
1857 | 2025-06-22 |
Low-field NMR-based deep learning for non-destructive quality assessment of frozen model foods
2025-Jun-16, Food chemistry
IF:8.5Q1
DOI:10.1016/j.foodchem.2025.145181
PMID:40540836
|
研究论文 | 本研究利用低场核磁共振和深度学习技术对冷冻模型食品进行非破坏性质量评估 | 结合低场核磁共振(LF-NMR)与反向传播人工神经网络(BP-ANN)构建新型质量评估模型 | 仅使用两种含水量的凝胶模型食品作为研究对象 | 开发冷冻食品的非破坏性质量评估方法 | 含水量90%和80%的凝胶模型食品 | 机器学习 | NA | 低场核磁共振(LF-NMR) | PLSR, BP-ANN | 核磁共振数据 | 梯度温度条件下冷冻的凝胶模型食品样本 |
1858 | 2025-06-22 |
SurgRIPE challenge: Benchmark of surgical robot instrument pose estimation
2025-Jun-14, Medical image analysis
IF:10.7Q1
DOI:10.1016/j.media.2025.103674
PMID:40541088
|
研究论文 | 介绍SurgRIPE挑战赛,旨在为手术机器人器械姿态估计提供基准测试 | 提出了首个针对无标记手术器械姿态估计的公开挑战赛,并提供了真实手术视频数据与真实姿态标注 | 未提及具体的数据集规模限制或算法泛化能力的局限性 | 推动手术机器人器械姿态估计技术的发展,实现更精确和自主的手术程序 | 手术机器人器械的姿态估计 | 计算机视觉 | NA | 深度学习 | NA | 视频 | NA |
1859 | 2025-06-22 |
Advanced mastitis detection in Bos indicus cows: A deep learning approach integrated with infrared thermography
2025-Jun-12, Journal of thermal biology
IF:2.9Q1
DOI:10.1016/j.jtherbio.2025.104173
PMID:40540820
|
研究论文 | 本研究提出了一种结合红外热成像技术和深度学习算法的方法,用于检测Tharparkar牛(Bos indicus)的乳腺炎 | 首次将红外热成像技术与深度学习算法结合,用于检测Tharparkar牛的乳腺炎,特别是在不同季节下的表现 | 研究仅针对Tharparkar牛,可能不适用于其他牛种 | 开发一种非侵入性、准确的乳腺炎检测方法,以提高奶牛的健康管理和生产效率 | Tharparkar牛(Bos indicus)的乳腺炎检测 | 数字病理 | 乳腺炎 | 红外热成像技术(IRT)、加州乳腺炎测试(CMT)、体细胞计数(SCC) | CNN、ResNet-50、VGG16 | 图像 | 7223个乳腺热图,来自健康、亚临床乳腺炎(SCM)和临床乳腺炎(CM)的乳腺区域 |
1860 | 2025-06-22 |
Hybrid adaptive attention deep supervision-guided U-Net for breast lesion segmentation in ultrasound computed tomography images
2025-Jun-09, Medical & biological engineering & computing
IF:2.6Q3
DOI:10.1007/s11517-025-03377-z
PMID:40488959
|
研究论文 | 提出了一种基于深度学习的混合自适应注意力深度监督引导U-Net网络(HAA-DSUNet),用于乳腺超声计算机断层扫描(BUCT)图像中的乳腺病变分割 | 用混合自适应注意力模块(HAAM)替代U-Net的传统采样卷积模块,以扩大感受野并探索丰富的全局特征,同时保留精细细节;应用对比损失作为深度监督以减少上采样过程中的信息损失 | NA | 开发自动化乳腺癌诊断系统,用于早期筛查乳腺病变以提高患者生存率 | 乳腺超声计算机断层扫描(BUCT)图像中的乳腺病变 | 数字病理 | 乳腺癌 | 深度学习 | HAA-DSUNet(基于U-Net的改进模型) | 图像 | 两个UCT图像数据集HCH和HCH-PHMC |