深度学习在生物医药领域中的应用

本数据库通过收集和整理最新科研文献信息而得,供了解领域前沿进展之用。数据源自 PubMed Data ,每日自动更新,已收录文献数量参见 统计表格。表格内容由 GPT 自动整理,可能存在错误或遗漏,请使用时务必注意核实!

如有建议或合作意向,欢迎联系 linlin.yan(AT)bioinfo.app 或 微信 yanlinlin82。本项目遵循 MIT 许可 发布,欢迎下载 源码 自行修改使用。如觉得不错,还请不吝 给我打赏,你的支持是我继续创新的重要动力!

Sample Image
添加微信请说明来意
Sample Image
微信赞赏

除通过在线浏览外,为方便用户离线查阅,本站也提供 付费下载(定价10元)。之所以考虑收费,是因为批量扫描这些文献并整理也是有一定成本的,还请理解并多多支持。本站数据会持续更新,而仅需一次付费,未来就可以随时重新下载到最新版本数据。

当前筛选条件: [分区不过滤] [IF不过滤] [发表日期不过滤] [清除筛选条件]
当前共找到 24649 篇文献,本页显示第 18601 - 18620 篇。
序号 推送日期 文章 类型 简述 创新点 不足 研究目的 研究对象 领域 病种 技术 模型 数据类型 样本量
18601 2024-08-31
Deep Learning for Single-Shot Structured Light Profilometry: A Comprehensive Dataset and Performance Analysis
2024-Jul-24, Journal of imaging IF:2.7Q3
研究论文 本文介绍了用于单次结构光轮廓术的深度学习方法,并提供了一个包含超过10,000个物理数据对的全面数据集,用于评估和比较不同的模型和网络架构。 本文的创新点在于构建了一个大规模的深度学习结构光轮廓术数据集,并公开了代码和数据集,以促进该领域的进一步研究和模型评估。 本文的局限性在于数据集的构建依赖于特定的3D打印校准目标,可能限制了数据集的通用性。 本文的研究目的是提供一个基准数据集,用于评估和比较不同的深度学习模型在单次结构光轮廓术中的性能。 本文的研究对象是单次深度学习结构光轮廓术中的神经网络模型和数据集。 计算机视觉 NA 深度学习 神经网络 图像 超过10,000个物理数据对
18602 2024-08-31
Deep Learning for Pneumonia Detection in Chest X-ray Images: A Comprehensive Survey
2024-Jul-23, Journal of imaging IF:2.7Q3
综述 本文全面分析了深度学习技术在胸片图像中用于肺炎检测的应用 分析并评估了使用视觉转换器(ViTs)在肺炎检测中的潜力 视觉转换器需要进一步研究以解决偏倚的胸片数据集、数据和代码可用性、模型解释的简易性、准确模型比较的系统方法、胸片数据集中的类别不平衡以及对抗性攻击等问题 探讨深度学习在肺炎检测中的应用及其效果 深度学习技术及其在胸片图像肺炎检测中的应用 计算机视觉 肺炎 深度学习 视觉转换器(ViTs) 图像 NA
18603 2024-08-31
CrysFormer: Protein structure determination via Patterson maps, deep learning, and partial structure attention
2024-Jul, Structural dynamics (Melville, N.Y.)
研究论文 本文提出了一种基于变换器模型的方法CrysFormer,利用蛋白质晶体学数据和部分结构信息来计算蛋白质的电子密度图 首次提出直接利用实验蛋白质晶体学数据和部分结构信息的变换器模型 仅在合成数据集上进行了验证,尚未在真实蛋白质结构数据上进行测试 改进蛋白质原子级结构的确定方法 蛋白质的原子级结构 机器学习 NA x-ray crystallography 变换器模型 蛋白质晶体学数据 两个合成数据集,一个包含每单位细胞两个残基,另一个包含十五个残基
18604 2024-08-31
Using Vision Transformer for high robustness and generalization in predicting EGFR mutation status in lung adenocarcinoma
2024-Jun, Clinical & translational oncology : official publication of the Federation of Spanish Oncology Societies and of the National Cancer Institute of Mexico IF:2.8Q2
研究论文 本文提出了一种使用视觉变换器(ViT)模型,通过非侵入性CT图像预测肺腺癌中EGFR突变状态的方法 采用基于自注意力机制的ViT-B/16模型,提高了预测EGFR突变状态的鲁棒性和泛化能力 NA 开发一种准确预测肺腺癌患者EGFR突变状态的深度学习模型 肺腺癌患者的CT图像及其EGFR突变状态 计算机视觉 肺腺癌 NA ViT 图像 525名患者用于模型训练和验证,30名患者用于外部测试
18605 2024-08-31
A computational clinical decision-supporting system to suggest effective anti-epileptic drugs for pediatric epilepsy patients based on deep learning models using patient's medical history
2024-May-31, BMC medical informatics and decision making IF:3.3Q2
研究论文 本研究开发了一种基于深度学习模型的计算临床决策支持系统,用于根据儿科癫痫患者的病史推荐有效的抗癫痫药物 本研究利用多通道卷积神经网络模型,针对三种特定的抗癫痫药物进行个性化预测,提高了药物推荐的准确性 本研究仅针对三种特定的抗癫痫药物进行模型训练和验证,未来可扩展到更多种类的药物 开发一种辅助医生根据患者病史推荐有效抗癫痫药物的计算系统,以减少不必要的药物尝试和提高治疗效果 儿科癫痫患者及其病史 机器学习 癫痫 卷积神经网络(CNN) CNN 病历记录 1000名儿科癫痫患者的7507份病历记录
18606 2024-08-31
Gaussian Aquila optimizer based dual convolutional neural networks for identification and grading of osteoarthritis using knee joint images
2024-03-27, Scientific reports IF:3.8Q1
研究论文 本研究利用基于高斯鹰优化器的双卷积神经网络对膝关节图像进行识别和分级,以诊断骨关节炎 提出了一种新的高斯鹰优化器(GAO),用于优化双卷积神经网络(DCNN)模型的参数,该模型通过减少层数来降低计算负担 NA 旨在通过早期检测骨关节炎并及时治疗,减轻患者的疼痛 骨关节炎患者的膝关节图像 计算机视觉 骨关节炎 卷积神经网络 双卷积神经网络 图像 总共2283张膝关节图像,其中1267张为正常膝关节图像,1016张为骨关节炎图像
18607 2024-08-31
Detecting abnormal cell behaviors from dry mass time series
2024-03-25, Scientific reports IF:3.8Q1
研究论文 本文介绍了一种新的自监督学习模型StArDusTS,用于检测细胞群体中的异常行为,通过分析细胞随时间的干质量时间序列来实现 提出了一个新颖的自监督学习模型StArDusTS,用于自动检测细胞异常行为,无需预先标签 NA 开发一种能够预测单细胞病理变化的新型自监督学习模型 细胞群体中的异常行为检测 机器学习 NA 自监督学习 StArDusTS 时间序列 涉及不同细胞系
18608 2024-08-31
PlaqueNet: deep learning enabled coronary artery plaque segmentation from coronary computed tomography angiography
2024-Mar-22, Visual computing for industry, biomedicine, and art
研究论文 本文介绍了一种名为PlaqueNet的深度学习方法,用于从冠状动脉CT血管造影图像中分割冠状动脉斑块 采用了先进的残差网络模块和深度可分离空洞空间金字塔池化结合双三次高效通道注意力(DASPP-BICECA)模块,提高了特征提取能力和分割准确性 NA 旨在通过深度学习技术提高冠状动脉斑块的检测准确性,以支持早期治疗和降低心血管疾病风险 冠状动脉斑块的分割 计算机视觉 心血管疾病 冠状动脉CT血管造影(CCTA) CNN 图像 未具体说明样本数量
18609 2024-08-31
Network depth affects inference of gene sets from bacterial transcriptomes using denoising autoencoders
2024, Bioinformatics advances IF:2.4Q2
研究论文 研究使用深度去噪自编码器(DAEs)从细菌转录组数据中推断基因集,并探讨网络架构对基因集推断的影响 将去噪自编码器的应用扩展到深度网络,并研究网络深度和宽度对基因集推断的影响 需要进一步验证和优化深度去噪自编码器在不同细菌数据集上的应用 开发一种基于深度去噪自编码器的管道,用于从转录组数据中提取基因集,并评估网络架构对基因集推断的影响 大肠杆菌的转录组数据和独立尿路致病性大肠杆菌数据集 机器学习 NA 去噪自编码器(DAEs) DAE 转录组数据 多个公开可用的细菌基因表达数据集
18610 2024-08-31
Interpolation-split: a data-centric deep learning approach with big interpolated data to boost airway segmentation performance
2024, Journal of big data IF:8.6Q1
研究论文 本文提出了一种基于大数据插值的深度学习方法——插值分割(Interpolation-Split),用于提升气道分割性能 该方法通过插值和图像分割提高数据的有用性和质量,并采用集成学习策略聚合不同尺度的气道段,实现了高效的气道树分割 NA 旨在提高气道树分割的性能 气道树的形态和分布异常 计算机视觉 慢性呼吸系统疾病 深度学习 集成学习 图像 NA
18611 2024-08-31
Deep learning pipeline reveals key moments in human embryonic development predictive of live birth after in vitro fertilization
2024, Biology methods & protocols IF:2.5Q3
研究论文 本文应用卷积神经网络(CNN)来识别与胚胎存活能力相关的人类胚胎发育关键窗口,以改进体外受精(IVF)胚胎的早期分级 利用迁移学习的优势,展示了CNN模型在小数据集上的性能,为临床个性化应用铺平道路 NA 提高体外受精治疗的成功率 人类胚胎发育的关键时刻及其与胚胎存活能力的关联 机器学习 NA 卷积神经网络(CNN) CNN 图像 数据集非常有限
18612 2024-08-31
Rapid prediction of wall shear stress in stenosed coronary arteries based on deep learning
2024, Frontiers in bioengineering and biotechnology IF:4.3Q2
研究论文 本文利用深度学习技术,通过结合合成数据和真实患者数据,训练了一个U-net架构的模型,用于快速预测狭窄冠状动脉的壁剪应力 本文采用了两种合成数据生成方法,并将其与真实患者数据结合,提高了模型的训练效果 文章中使用的患者数据有限,主要依赖于合成数据 开发一种快速且高效的深度学习模型,用于临床实践中预测冠状动脉的壁剪应力 狭窄冠状动脉的壁剪应力 机器学习 心血管疾病 深度学习 U-net 图像 患者数据有限,主要使用合成数据
18613 2024-08-31
A new method of rock type identification based on transformer by utilizing acoustic emission
2024, PloS one IF:2.9Q1
研究论文 本文提出了一种基于声发射信号和3CTNet模型的新型岩石类型识别框架,该模型结合了卷积神经网络和Transformer编码器,用于智能识别不同岩石断裂的声发射信号 引入了一种新的信号识别模型3CTNet,该模型通过建立数据中相邻位置的依赖关系并逐步提取高级特征,提高了岩石类型识别的准确性 NA 解决传统分析方法在处理大数据时的不足,提高岩石类型识别的效率和准确性 岩石类型的识别 地球科学 NA 声发射信号处理 3CTNet(CNN与Transformer的结合) 声发射信号 NA
18614 2024-08-31
CSAM: A 2.5D Cross-Slice Attention Module for Anisotropic Volumetric Medical Image Segmentation
2024-Jan, IEEE Winter Conference on Applications of Computer Vision. IEEE Winter Conference on Applications of Computer Vision
研究论文 本文提出了一种2.5D交叉切片注意力模块(CSAM),用于各向异性体积医学图像分割 CSAM通过在不同尺度的深度特征图上应用语义、位置和切片注意力,以最少的可训练参数捕获整个体积中的切片间信息 NA 解决各向异性体积医学数据分割中的问题,特别是磁共振成像(MRI)数据 各向异性体积医学图像 计算机视觉 NA 深度学习 CNN 图像 NA
18615 2024-08-31
Evaluation of the Artificial Intelligence Chatbot on Breast Reconstruction and Its Efficacy in Surgical Research: A Case Study
2023-12, Aesthetic plastic surgery IF:2.0Q2
研究论文 本研究评估了人工智能聊天机器人ChatGPT在乳房重建领域的应用及其在整形外科研究中的效果 首次评估ChatGPT在整形外科研究中的准确性和全面性 ChatGPT在回答中缺乏深度,生成不存在的参考文献,引用错误的期刊和日期,存在学术诚信问题 评估ChatGPT在整形外科研究中的适用性 ChatGPT在乳房重建领域的应用 机器学习 NA 深度学习 NA 文本 6个问题
18616 2024-08-31
Association Between Fat Depletion and Prognosis of Amyotrophic Lateral Sclerosis: CT-Based Body Composition Analysis
2023-12, Annals of neurology IF:8.1Q1
研究论文 本研究探讨了脂肪减少与肌萎缩侧索硬化症(ALS)患者预后的关系,使用基于深度学习的CT体成分分析软件进行分析 首次使用深度学习技术进行CT体成分分析,评估脂肪减少和肌肉减少对ALS患者生存的影响 研究为回顾性分析,样本量相对较小,且仅在单一医院进行 评估脂肪减少和肌肉减少对ALS患者预后的影响 肌萎缩侧索硬化症患者 数字病理学 神经退行性疾病 CT 深度学习 图像 80名患者(40名男性,平均年龄65.5±9.4岁)
18617 2024-08-31
A high-resolution canopy height model of the Earth
2023-Nov, Nature ecology & evolution IF:13.9Q1
研究论文 本文介绍了一种全球冠层高度图,分辨率为10米,基于融合了GEDI LiDAR数据和Sentinel-2卫星图像的深度学习模型 开发了一种概率深度学习模型,能够从Sentinel-2图像中检索冠层顶部高度并量化估计的不确定性 NA 提供高分辨率的全球冠层高度模型,以支持生态系统管理、气候变化缓解和生物多样性保护 全球冠层高度及其在生态系统中的分布 计算机视觉 NA 深度学习 深度学习模型 图像 全球陆地面积的5%被超过30米的树木覆盖
18618 2024-08-31
Comparison of Machine Learning Detection of Low Left Ventricular Ejection Fraction Using Individual ECG Leads
2023-Oct, Computing in cardiology
研究论文 本研究开发并应用了一种深度学习架构,用于检测低左心室射血分数(LVEF),并比较了使用单个导联和整个12导联ECG训练该架构的性能 探索了使用单个导联ECG数据进行机器学习分析的可能性,并发现单导联训练的网络与全12导联训练的网络性能相似 未提及具体限制 开发和比较使用单个导联和整个12导联ECG进行机器学习分析的性能 低左心室射血分数(LVEF)的检测 机器学习 心血管疾病 机器学习(ML) 深度学习 ECG数据 未提及具体样本数量
18619 2024-08-31
Antigen-specific CD4+ T cells exhibit distinct transcriptional phenotypes in the lymph node and blood following vaccination in humans
2023-Sep-15, Research square
研究论文 研究评估了BNT162b2 mRNA疫苗接种后,人类血液和引流淋巴结中针对SARS-CoV-2刺突蛋白的CD4 T细胞的单细胞转录组特征 使用新的深度学习方法Trex进行反向表位映射,结合单细胞TCR测序和转录组学来预测抗原特异性 NA 探讨SARS-CoV-2感染和mRNA疫苗接种后CD4 T细胞的转录组特征 人类血液和引流淋巴结中的刺突特异性CD4 T细胞 免疫学 NA 单细胞转录组学 深度学习 转录组数据 多个刺突特异性CD4 T细胞克隆型
18620 2024-08-31
Deep learning-assisted diagnosis of benign and malignant parotid tumors based on contrast-enhanced CT: a multicenter study
2023-Sep, European radiology IF:4.7Q1
研究论文 本研究开发了基于CT图像的深度学习辅助诊断模型,以帮助放射科医生区分良性和恶性腮腺肿瘤 开发的深度学习模型在预测良性和恶性腮腺肿瘤方面优于传统的支持向量机模型 NA 开发深度学习辅助诊断模型,以提高放射科医生对腮腺肿瘤的诊断性能 良性和恶性腮腺肿瘤的诊断 机器学习 腮腺肿瘤 深度学习 CNN 图像 573名经组织病理学确认的腮腺肿瘤患者
回到顶部