深度学习在生物医药领域的应用

本数据库通过收集和整理最新科研文献信息而得,供了解领域前沿进展之用。数据源自 PubMed Data ,每日自动更新(使用关键词“['deep learning']”过滤),已收录文献数量参见 统计表格。表格内容由 GPT 自动整理,可能存在错误或遗漏,请使用时务必注意核实!

如有建议或合作意向,欢迎联系 linlin.yan(AT)bioinfo.app 或 微信 yanlinlin82。本项目遵循 MIT 许可 发布,欢迎下载 源码 自行修改使用。如觉得不错,还请不吝 给我打赏,你的支持是我继续创新的重要动力!

Sample Image
添加微信请说明来意
Sample Image
微信赞赏

除通过在线浏览外,为方便用户离线查阅,本站也提供 付费下载(定价19.9元)。之所以考虑收费,是因为批量扫描这些文献并整理也是有一定成本的,还请理解并多多支持。本站数据会持续更新,而仅需一次付费,未来就可以随时重新下载到最新版本数据。

当前筛选条件: [分区不过滤] [IF不过滤] [发表日期不过滤] [清除筛选条件]
当前共找到 34204 篇文献,本页显示第 19061 - 19080 篇。
序号 推送日期 文章 类型 简述 创新点 不足 研究目的 研究对象 领域 病种 技术 模型 数据类型 样本量 算法框架 模型架构 性能指标 计算资源
19061 2025-02-05
FedDL: personalized federated deep learning for enhanced detection and classification of diabetic retinopathy
2024, PeerJ. Computer science
研究论文 本文提出了一种名为FedDL的个性化联邦深度学习系统,用于增强糖尿病视网膜病变的检测和分类 通过联邦学习(FL)框架,实现了在不暴露临床信息的情况下集体训练深度学习模型,显著提高了隐私保护和性能 研究中仅使用了五个客户端的数据,样本量相对较小,可能影响模型的泛化能力 开发一个在训练深度学习模型时确保隐私的系统,以监测各种医疗设施 糖尿病视网膜病变(DR)患者 数字病理学 糖尿病视网膜病变 联邦学习(FL) ResNet50 图像 五个客户端,每个客户端提供独特的眼底图像,数据来源于公开数据库如IDRiD和STARE NA NA NA NA
19062 2025-02-05
DANNET: deep attention neural network for efficient ear identification in biometrics
2024, PeerJ. Computer science
研究论文 本文提出了一种名为DANNET的深度注意力神经网络,用于在生物识别中高效地进行耳朵识别 创新点在于结合了编码器-解码器架构和注意力机制,使用两个YSegNets的集成方法,提高了耳朵检测和分割的精度和可靠性 未明确提及具体限制 研究目的是开发一种在面部特征部分遮挡情况下仍能有效工作的生物识别系统 研究对象是耳朵生物识别 计算机视觉 NA 深度学习 编码器-解码器架构,注意力机制,YSegNet 图像 使用了EarVN1.0、AMI和Human Face数据集的数据 NA NA NA NA
19063 2025-02-05
BSEFNet: bidirectional self-attention edge fusion network salient object detection based on deep fusion of edge features
2024, PeerJ. Computer science
研究论文 本文提出了一种基于边缘特征深度融合的双向自注意力边缘融合网络(BSEFNet),用于显著目标检测 通过整合显著目标和边缘信息,提出了一种新的方法来提高显著目标检测的边界准确性,包括自注意力组像素融合模块(SGPFM)和双向特征融合模块(BFF) 未明确提及具体局限性 提高显著目标检测的边界准确性 图像中的显著目标 计算机视觉 NA NA BSEFNet, ResNet50 图像 NA NA NA NA NA
19064 2025-02-05
ISCCO: a deep learning feature extraction-based strategy framework for dynamic minimization of supply chain transportation cost losses
2024, PeerJ. Computer science
研究论文 本研究提出了一种名为智能供应链成本优化(ISCCO)的新框架,通过整合深度学习和高级优化算法,旨在最小化运输成本并提高供应链效率 ISCCO框架创新性地结合了自编码器和随机森林进行客户细分,并使用遗传算法增强的整数线性规划模型优化货物分配 未提及具体的数据集来源或实验的广泛适用性 优化供应链运输成本,提高物流分配效率 全球电子商务供应链 机器学习 NA 深度学习,遗传算法,整数线性规划 自编码器,随机森林 实时需求数据 未提及具体样本数量 NA NA NA NA
19065 2025-02-05
An ensemble approach for research article classification: a case study in artificial intelligence
2024, PeerJ. Computer science
研究论文 本文提出了一种基于深度学习的集成方法,用于动态研究领域中的文章分类,以人工智能领域为例 引入了一种结合决策树、sciBERT和正则表达式匹配的集成方法,并使用支持向量机(SVM)合并不同模型的结果,显著提高了分类效果 研究仅以人工智能领域为例,未验证在其他领域的泛化能力 解决新兴领域中研究文章分类的挑战,提高分类的准确性和召回率 人工智能领域的研究文章 自然语言处理 NA 深度学习、正则表达式匹配 决策树、sciBERT、SVM 文本 手动标注的数据集,具体数量未提及 NA NA NA NA
19066 2025-02-05
Integrating particle swarm optimization with backtracking search optimization feature extraction with two-dimensional convolutional neural network and attention-based stacked bidirectional long short-term memory classifier for effective single and multi-document summarization
2024, PeerJ. Computer science
研究论文 本文提出了一种结合粒子群优化与回溯搜索优化的特征提取方法,以及基于注意力机制的堆叠双向长短期记忆分类器,用于有效的单文档和多文档摘要生成 创新点在于结合了粒子群优化与回溯搜索优化(PSOBSA)进行特征提取,并使用二维卷积神经网络(2D CNN)和基于注意力机制的堆叠双向长短期记忆(ABS-BiLSTM)模型进行摘要生成 未明确提及具体局限性 研究目标是提高单文档和多文档摘要生成的准确性和效率 研究对象为单文档和多文档摘要生成 自然语言处理 NA 粒子群优化(PSO)、回溯搜索优化(BSA)、二维卷积神经网络(2D CNN)、基于注意力机制的堆叠双向长短期记忆(ABS-BiLSTM) 2D CNN、ABS-BiLSTM 文本 使用DUC 2002、2003、2005数据集进行单文档摘要,以及DUC 2002、2003、2005、Multi-News和CNN/Daily Mail数据集进行多文档摘要 NA NA NA NA
19067 2025-02-05
Challenges issues and future recommendations of deep learning techniques for SARS-CoV-2 detection utilising X-ray and CT images: a comprehensive review
2024, PeerJ. Computer science
综述 本文全面回顾了截至2024年5月使用深度学习技术进行基于影像的SARS-CoV-2诊断的研究,涵盖了数据来源、预处理方法、深度学习技术分类、研究结果、研究空白和性能评估 本文不仅综述了现有研究,还通过实验比较了12种当代深度学习技术,发现MobileNetV3模型在SARS-CoV-2影像检测中表现最佳,准确率达到98.11% 本文主要关注影像数据的深度学习应用,未涉及其他类型的数据或诊断方法 探讨深度学习技术在基于影像的SARS-CoV-2诊断中的应用及其未来发展方向 SARS-CoV-2的X射线和CT影像 计算机视觉 COVID-19 深度学习 MobileNetV3, 其他深度学习模型 影像 NA NA NA NA NA
19068 2025-02-05
A comprehensive analysis and performance evaluation for osteoporosis prediction models
2024, PeerJ. Computer science
研究论文 本文通过深度学习技术,利用NHANES 2017-2020数据集预测骨质疏松症的发生,并比较了不同特征选择方法和神经网络模型的性能 本研究创新地应用了互信息(MI)和递归特征消除(RFE)两种特征选择方法,结合多种深度学习模型(如CNN、RNN等),在非图像医学数据上实现了高精度的骨质疏松症预测 研究仅基于NHANES 2017-2020数据集,可能无法完全代表其他人群或更广泛的数据集 通过深度学习技术提高骨质疏松症的预测准确性,以辅助医疗决策 NHANES 2017-2020数据集中的SpineOsteo和FemurOsteo数据 机器学习 骨质疏松症 深度学习 CNN, RNN, 序列深度神经网络 非图像医学数据 NHANES 2017-2020数据集 NA NA NA NA
19069 2025-02-05
Golden eagle optimized CONV-LSTM and non-negativity-constrained autoencoder to support spatial and temporal features in cancer drug response prediction
2024, PeerJ. Computer science
研究论文 本文提出了一种结合非负约束自编码器(NNCAE)和金鹰优化卷积长短期记忆神经网络(GEO-Conv-LSTM)的混合分类器,用于癌症药物反应预测 创新点在于使用NNCAE处理噪声和类别不平衡问题,并通过GEO算法优化Conv-LSTM模型的参数,提高了药物反应预测的准确性和处理效率 未明确提及具体局限性 研究目的是提高癌症药物反应预测的准确性和处理效率 研究对象是癌症药物反应预测 机器学习 癌症 NNCAE, GEO-Conv-LSTM CNN, LSTM 基因组数据 来自GDSC数据库的两个大型数据集 NA NA NA NA
19070 2025-02-05
The potential of short-wave infrared hyperspectral imaging and deep learning for dietary assessment: a prototype on predicting closed sandwiches fillings
2024, Frontiers in nutrition IF:4.0Q2
研究论文 本文探讨了短波红外高光谱成像和深度学习在家庭自制餐食饮食评估中的适用性,通过构建一个原型系统来自动检测封闭三明治中的食物成分 首次将短波红外高光谱成像与机器学习结合,用于家庭自制餐食的饮食评估,特别是封闭三明治的食物成分检测 模型在预测可涂抹馅料时表现较差,可能过于关注结构特征而非营养成分 开发一种不干扰自然饮食习惯的饮食摄入准确测量方法 封闭三明治中的食物成分 计算机视觉 NA 短波红外高光谱成像 PLS-DA, 多分类器, 简单神经网络 高光谱图像 24张高光谱图像 NA NA NA NA
19071 2025-02-05
An explainable Bi-LSTM model for winter wheat yield prediction
2024, Frontiers in plant science IF:4.1Q1
研究论文 本研究开发了一种可解释的Bi-LSTM模型,用于冬小麦产量预测,结合了深度学习和解释性技术 首次在区域尺度上应用Bi-LSTM模型进行作物产量预测,并结合LIME、IG和SHAP等解释性技术,提供了模型决策过程的直观见解 研究主要关注冬小麦,未涉及其他作物,且模型的解释性分析可能受限于所选解释性技术的局限性 开发一种可解释的深度学习模型,用于准确预测作物产量并提供预测解释 冬小麦 机器学习 NA 深度学习 Bi-LSTM, LSTM, 1D CNN 时间序列数据 未明确说明样本数量,但涉及多个区域和产量数据范围 NA NA NA NA
19072 2025-02-05
Research on the quantification and automatic classification method of Chinese cabbage plant type based on point cloud data and PointNet+
2024, Frontiers in plant science IF:4.1Q1
研究论文 本文提出了一种基于点云数据和PointNet++深度学习算法的大白菜株型快速准确量化和自动分类方法 结合点云数据处理和深度学习算法PointNet++,首次实现了大白菜株型的快速准确量化和自动分类 目前的方法主要依赖于点云数据,可能在实际应用中受到数据采集条件的限制 开发一种能够快速准确量化和分类大白菜株型的方法,以提高作物管理和育种效率 大白菜株型 计算机视觉 NA 点云数据处理,深度学习 PointNet++ 点云数据 未明确说明样本数量 NA NA NA NA
19073 2025-10-07
Deep-learning CT reconstruction in clinical scans of the abdomen: a systematic review and meta-analysis
2023-08, Abdominal radiology (New York)
系统综述与荟萃分析 对腹部CT扫描中两种商用深度学习重建算法进行系统评价和荟萃分析 首次对商用深度学习CT重建算法(True Fidelity和AiCE)在腹部扫描中的应用进行系统性评估 仅评估了单一厂商的双能量CT,需要更多剂量水平和临床适应症的评估 评估深度学习CT重建算法在腹部扫描中的图像质量和辐射剂量优化效果 人体腹部CT扫描 医学影像分析 腹部疾病 CT扫描 深度学习重建算法 CT图像 44篇符合纳入标准的研究(32篇评估TF,12篇评估AiCE) NA True Fidelity, Advanced intelligent Clear-IQ Engine (AiCE) 噪声降低率, 对比噪声比, 病灶检测能力, 辐射剂量降低潜力 NA
19074 2025-10-07
Predicting pathological complete response to neoadjuvant systemic therapy for triple-negative breast cancers using deep learning on multiparametric MRIs
2023-07, Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Annual International Conference
研究论文 开发基于深度学习的多参数MRI模型预测三阴性乳腺癌新辅助系统治疗的病理完全缓解 首次结合治疗前和治疗中多个时间点的多参数MRI序列(DCE-MRI和DWI),利用深度学习早期预测TNBC患者对新辅助系统治疗的反应 NA 预测三阴性乳腺癌患者对新辅助系统治疗的病理完全缓解反应 三阴性乳腺癌患者 计算机视觉 乳腺癌 动态对比增强MRI, 扩散加权成像 深度学习 医学影像 NA NA NA AUC NA
19075 2024-12-28
Network embedding: The bridge between water distribution network hydraulics and machine learning
2025-Apr-01, Water research IF:11.4Q1
研究论文 本文提出了一种新的水分配网络嵌入(WDNE)方法,将水分配网络的液压关系转化为适合机器学习算法的向量形式 提出了WDNE方法,首次将水分配网络的液压特性有效整合到机器学习中,并通过两种深度自编码器嵌入模型同时保留液压关系和属性信息 未提及具体局限性 解决水分配网络管理问题,提升机器学习算法在水分配网络中的应用效率 水分配网络(WDNs) 机器学习 NA 深度自编码器嵌入模型 自编码器 网络拓扑数据 未提及具体样本数量 NA NA NA NA
19076 2025-10-07
Brain tumor detection and segmentation using deep learning
2025-Feb, Magma (New York, N.Y.)
研究论文 本研究比较了不同目标检测算法在脑肿瘤检测中的性能,并提出将最佳检测网络与2D U-Net结合用于肿瘤分割 首次系统比较Faster R-CNN、YOLO和SSD在脑肿瘤检测中的性能,并提出YOLOv5与2D U-Net级联的新方法 研究主要基于特定数据集(BTF和BRATS 2018),在其他数据集上的泛化能力有待验证 开发准确的脑肿瘤检测、分类和分割方法 脑肿瘤MRI图像 计算机视觉 脑肿瘤 MRI CNN 医学图像 BTF数据集和BRATS 2018数据集 NA Faster R-CNN, YOLOv5, SSD, 2D U-Net, Mask R-CNN mAP, DSC NA
19077 2025-02-04
A comprehensive review on early detection of drusen patterns in age-related macular degeneration using deep learning models
2025-Feb, Photodiagnosis and photodynamic therapy IF:3.1Q2
综述 本文综述了使用深度学习模型早期检测年龄相关性黄斑变性(AMD)中玻璃膜疣模式的全面研究 提出了一种基于深度学习的模型,通过结合局部和全局知识来优化AMD早期阶段的玻璃膜疣检测 现有模型由于眼底图像分辨率问题,难以准确预测玻璃膜疣区域 研究目的是通过深度学习技术早期检测AMD中的玻璃膜疣模式 研究对象是年龄相关性黄斑变性(AMD)患者的眼底图像 计算机视觉 老年疾病 深度学习 深度学习模型 图像 NA NA NA NA NA
19078 2025-02-04
Multi-Dimensional Features Extraction for Voice Pathology Detection Based on Deep Learning Methods
2025-Feb-01, Journal of voice : official journal of the Voice Foundation IF:2.5Q1
研究论文 本文提出了一种基于深度学习的多维特征提取方法,用于语音病理检测 提出了一种结合Gammatonegram特征与TKEO Scalogram特征的特征提取方案,命名为CGT Scalogram NA 提高语音病理检测的准确性 健康语音与病理语音 自然语言处理 语音障碍 深度学习 ResNet 语音信号 Saarbrucken语音数据库 NA NA NA NA
19079 2025-02-04
Enhancing feature-aided data association tracking in passive sonar arrays: An advanced Siamese network approach
2025-Feb-01, The Journal of the Acoustical Society of America IF:2.1Q1
研究论文 本文提出了一种基于Siamese网络的高级网络BiChannel-SiamDinoNet,用于改进被动声纳阵列中的特征辅助数据关联跟踪方法 提出了BiChannel-SiamDinoNet网络,结合Siamese网络和联合概率数据关联框架,通过声学目标的特征结构形成嵌入空间,使系统对变化更加鲁棒,并能有效区分测量和目标之间的差异 未提及具体局限性 改进被动声纳阵列中的多目标跟踪方法,提高在复杂海洋场景中的性能 被动声纳阵列中的多目标跟踪 机器学习 NA 深度学习 Siamese网络 声学信号 未提及具体样本数量 NA NA NA NA
19080 2025-10-07
A combined model integrating radiomics and deep learning based on multiparametric magnetic resonance imaging for classification of brain metastases
2025-Jan, Acta radiologica (Stockholm, Sweden : 1987)
研究论文 本研究开发了一种结合影像组学和深度学习的多参数MRI模型,用于区分肺腺癌和非肺腺癌脑转移瘤 首次将影像组学与深度学习通过分类概率平均方法结合,构建深度迁移学习影像组学模型 回顾性研究设计,样本来源单一 探索基于多参数MRI的深度迁移学习影像组学在脑转移瘤分类中的可行性 342名患者的1389个脑转移瘤病灶 医学影像分析 脑转移瘤 多参数磁共振成像 CNN, 机器学习算法 医学影像 342名患者,1389个脑转移瘤病灶(训练集273人/1179病灶,测试集69人/210病灶) NA 预训练卷积神经网络 AUC, 校准曲线, 决策曲线分析 NA
回到顶部