本数据库通过收集和整理最新科研文献信息而得,供了解领域前沿进展之用。数据源自 PubMed Data ,每日自动更新(使用关键词“['deep learning']”过滤),已收录文献数量参见 统计表格。表格内容由 GPT 自动整理,可能存在错误或遗漏,请使用时务必注意核实!
如有建议或合作意向,欢迎联系 linlin.yan(AT)bioinfo.app 或 微信 yanlinlin82。本项目遵循 MIT 许可 发布,欢迎下载 源码 自行修改使用。如觉得不错,还请不吝 给我打赏,你的支持是我继续创新的重要动力!


除通过在线浏览外,为方便用户离线查阅,本站也提供 付费下载(定价19.9元)。之所以考虑收费,是因为批量扫描这些文献并整理也是有一定成本的,还请理解并多多支持。本站数据会持续更新,而仅需一次付费,未来就可以随时重新下载到最新版本数据。
| 序号 | 推送日期 | 文章 | 类型 | 简述 | 创新点 | 不足 | 研究目的 | 研究对象 | 领域 | 病种 | 技术 | 模型 | 数据类型 | 样本量 | 算法框架 | 模型架构 | 性能指标 | 计算资源 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 19101 | 2025-03-28 |
Optimized deep learning model for diagnosing tonsil and adenoid hypertrophy through X-rays
2025, Frontiers in oncology
IF:3.5Q2
DOI:10.3389/fonc.2025.1508525
PMID:40134602
|
研究论文 | 探讨基于深度学习模型在诊断儿童扁桃体和腺样体肥大中的应用 | 结合YOLOv8n和ResNet18模型,显著提高了诊断准确性和一致性 | 研究仅基于单中心的回顾性数据,可能影响模型的泛化能力 | 探索深度学习在诊断扁桃体和腺样体肥大中的应用 | 2-12岁儿童患者的侧位鼻咽X光片 | 计算机视觉 | 扁桃体和腺样体肥大 | X光成像 | YOLOv8n, ResNet18 | 图像 | 819张训练和验证图像,484张独立测试图像 | NA | NA | NA | NA |
| 19102 | 2025-03-28 |
AI-driven balance evaluation: a comparative study between blind and non-blind individuals using the mini-BESTest
2025, PeerJ. Computer science
DOI:10.7717/peerj-cs.2695
PMID:40134862
|
研究论文 | 本研究首次使用mini-BESTest和惯性测量单元分析盲人平衡能力,并通过机器学习模型预测评分 | 首次使用mini-BESTest和惯性测量单元分析盲人平衡能力,并开发机器学习模型预测评分 | 惯性数据无法区分三个评估水平,且样本量较小(29名参与者) | 分析盲人和非盲人的平衡能力差异,并开发客观评估方法 | 盲人和非盲人的平衡能力 | 数字病理学 | NA | 惯性测量单元,机器学习,深度学习 | 机器学习模型,深度学习模型 | 惯性测量数据 | 29名盲人和非盲人参与者 | NA | NA | NA | NA |
| 19103 | 2025-03-28 |
Facial expression recognition using visible and IR by early fusion of deep learning with attention mechanism
2025, PeerJ. Computer science
DOI:10.7717/peerj-cs.2676
PMID:40134864
|
研究论文 | 本文提出了一种结合可见光和红外图像特征的早期融合方法,用于面部表情识别,通过引入注意力机制和深度学习方法提高了识别准确率 | 在ResNet-18架构中引入注意力机制,并提出多模态早期融合方法,结合CNN和迁移学习技术,显著提高了面部表情识别的准确率 | 仅使用了VIRI和NVIE两个公开数据库,可能在其他数据集上的泛化能力有待验证 | 解决面部表情识别中因表情变化和不同表情相似性带来的挑战 | 可见光和红外图像中的面部表情 | 计算机视觉 | NA | 深度学习,迁移学习 | ResNet-18 with attention mechanism, CNN | 可见光和红外图像 | VIRI和NVIE数据库中的面部表情图像 | NA | NA | NA | NA |
| 19104 | 2025-03-28 |
Fake news detection: state-of-the-art review and advances with attention to Arabic language aspects
2025, PeerJ. Computer science
DOI:10.7717/peerj-cs.2693
PMID:40134874
|
review | 本文全面回顾了假新闻的类型、领域、特征、生命周期及检测方法,特别关注了阿拉伯语假新闻检测的最新进展 | 特别关注阿拉伯语假新闻检测的挑战与解决方案,包括复杂的语法、多样的方言及标注数据稀缺问题 | 阿拉伯语假新闻检测领域的研究相对较少,且缺乏足够的标注数据集 | 探讨假新闻检测的最新方法,特别是针对阿拉伯语的检测技术 | 假新闻,尤其是阿拉伯语假新闻 | natural language processing | NA | machine learning, deep learning, transformer-based techniques | NA | text | NA | NA | NA | NA | NA |
| 19105 | 2025-03-28 |
Protein language model-based prediction for plant miRNA encoded peptides
2025, PeerJ. Computer science
DOI:10.7717/peerj-cs.2733
PMID:40134870
|
研究论文 | 提出了一种基于蛋白质语言模型的植物miRNA编码肽预测方法pLM4PEP,该方法整合了ESM2肽嵌入与机器学习技术 | 利用蛋白质语言模型ESM2改进植物miPEPs的特征表示,相较于依赖人工编码特征的传统方法具有显著优势 | 训练数据中已知植物miPEPs的数量有限可能影响模型性能 | 开发更准确的植物miRNA编码肽预测方法 | 植物miRNA编码肽(miPEPs)及其他生物活性肽 | 生物信息学 | NA | 蛋白质语言模型(ESM2)、机器学习 | pLM4PEP(集成ESM2与机器学习) | 蛋白质序列数据 | 未明确说明具体样本量,但使用了包含其他生物活性肽的多样化数据集 | NA | NA | NA | NA |
| 19106 | 2025-03-28 |
DeepSpoofNet: a framework for securing UAVs against GPS spoofing attacks
2025, PeerJ. Computer science
DOI:10.7717/peerj-cs.2714
PMID:40134872
|
研究论文 | 提出DeepSpoofNet框架,用于保护无人机免受GPS欺骗攻击 | 结合高级特征选择技术和强大的神经网络架构,提出一种混合NN模型(ANOVA + CNN-BiLSTM),显著提高了GPS欺骗攻击检测的准确性和性能 | 当前最先进研究中存在的挑战包括数据集不平衡、特征选择次优以及在资源受限环境中的攻击检测准确性 | 解决无人机GPS欺骗攻击检测中的挑战 | 无人机(UAVs)及其GPS接收器 | 机器学习 | NA | 深度学习、特征选择 | CNN、BiLSTM、混合NN模型 | GPS信号数据 | NA | NA | NA | NA | NA |
| 19107 | 2025-03-28 |
Automatic cassava disease recognition using object segmentation and progressive learning
2025, PeerJ. Computer science
DOI:10.7717/peerj-cs.2721
PMID:40134883
|
研究论文 | 本研究开发了一种基于深度学习的框架,用于在现实条件下早期、准确且高效地检测木薯病害 | 提出了一种结合自监督对象分割技术和渐进学习算法(PLA)的方法,利用三元组损失和分类损失学习鲁棒的特征嵌入 | NA | 开发一种适用于大规模农业使用的木薯病害检测方法 | 木薯病害 | 计算机视觉 | 植物病害 | 自监督对象分割技术,渐进学习算法(PLA) | 深度学习 | 图像 | Kaggle竞赛中的Cassava Leaf Disease Classification (CLDC)数据集 | NA | NA | NA | NA |
| 19108 | 2025-03-28 |
Optimal intrusion detection for imbalanced data using Bagging method with deep neural network optimized by flower pollination algorithm
2025, PeerJ. Computer science
DOI:10.7717/peerj-cs.2745
PMID:40134887
|
研究论文 | 本文提出了一种基于元启发式和深度学习技术的新型入侵检测系统(IDS),用于处理物联网网络中的不平衡数据问题 | 结合花授粉算法(FPA)和深度神经网络(DNN)的混合方法,并采用RB Bagging策略处理类别不平衡问题 | 未明确提及具体局限性 | 开发高效的入侵检测系统以管理物联网网络中的风险和漏洞 | 物联网网络中的入侵检测 | 机器学习 | NA | 花授粉算法(FPA),深度神经网络(DNN) | DNN | 网络流量数据 | 四个公共数据集(NSL-KDD, UNSW NB-15, CIC-IDS-2017, BoT-IoT) | NA | NA | NA | NA |
| 19109 | 2025-03-28 |
Development of a cryptocurrency price prediction model: leveraging GRU and LSTM for Bitcoin, Litecoin and Ethereum
2025, PeerJ. Computer science
DOI:10.7717/peerj-cs.2675
PMID:40134889
|
research paper | 该研究开发了一种利用GRU和LSTM模型预测比特币、莱特币和以太坊价格的加密货币价格预测模型 | 比较了GRU和LSTM在加密货币价格预测中的表现,发现GRU模型优于LSTM | 未考虑社交媒体趋势和交易量等可能影响加密货币价格的其他变量 | 开发高精度的加密货币价格预测模型 | 比特币(BTC)、莱特币(LTC)和以太坊(ETH)三种主要加密货币 | machine learning | NA | NA | GRU, LSTM | time-series data | 历史价格数据来自CryptoDataDownload,按80:20的比例划分训练集和测试集 | NA | NA | NA | NA |
| 19110 | 2025-03-28 |
Bone density measurement in patients with spinal metastatic tumors using chest quantitative CT deep learning model
2024-Dec, Journal of bone oncology
IF:3.1Q2
DOI:10.1016/j.jbo.2024.100641
PMID:40134559
|
研究论文 | 本研究开发了一种基于3DResUNet架构的深度学习模型,用于从定量计算机断层扫描(QCT)中预测脊柱转移瘤患者的椎体体积骨密度(vBMD) | 使用3DResUNet架构的深度学习模型首次应用于脊柱转移瘤患者的vBMD预测,提高了骨质疏松筛查的能力 | 研究样本量有限(749例),且仅针对脊柱转移瘤患者,可能不适用于其他人群 | 开发一种深度学习模型,用于预测脊柱转移瘤患者的椎体体积骨密度(vBMD),以增强骨质疏松筛查能力 | 脊柱转移瘤患者 | 数字病理学 | 脊柱转移瘤 | 定量计算机断层扫描(QCT) | 3DResUNet | 医学影像 | 749例脊柱转移瘤患者(训练集599例,测试集150例) | NA | NA | NA | NA |
| 19111 | 2025-10-07 |
Assessing deep learning reconstruction for faster prostate MRI: visual vs. diagnostic performance metrics
2024-Nov, European radiology
IF:4.7Q1
DOI:10.1007/s00330-024-10771-y
PMID:38724765
|
研究论文 | 评估深度学习重建在前列腺MRI加速扫描中的视觉质量与诊断性能差异 | 将诊断性AI纳入评估框架,提供临床相关指标来评估重建模型的诊断质量 | 回顾性研究,需要大型读者研究来全面评估诊断影响 | 评估深度学习MRI重建在加速前列腺扫描中的诊断质量 | 1535名患者的前列腺MRI数据和临床显著前列腺癌病变 | 医学影像分析 | 前列腺癌 | MRI, 深度学习重建 | 深度学习模型 | 医学影像 | 1535名患者 | NA | NA | pAUC, FROC, SSIM, Cohen's kappa | NA |
| 19112 | 2025-03-28 |
Longitudinal ultrasound-based AI model predicts axillary lymph node response to neoadjuvant chemotherapy in breast cancer: a multicenter study
2024-Nov, European radiology
IF:4.7Q1
DOI:10.1007/s00330-024-10786-5
PMID:38724768
|
研究论文 | 开发基于纵向乳腺超声和超声医师腋窝超声诊断的深度学习放射组学模型,用于预测乳腺癌新辅助化疗后腋窝淋巴结反应 | 结合纵向超声图像和深度学习特征,开发融合模型以预测腋窝淋巴结反应,性能优于传统超声医师诊断 | 研究局限于三个中心的数据,样本量可能不足以代表广泛人群 | 预测乳腺癌患者新辅助化疗后腋窝淋巴结的反应 | 乳腺癌患者 | 数字病理学 | 乳腺癌 | 超声成像,深度学习放射组学 | 随机森林,支持向量机 | 超声图像 | 2016年11月至2022年12月间三个中心招募的乳腺癌患者 | NA | NA | NA | NA |
| 19113 | 2025-03-28 |
Message-Passing Monte Carlo: Generating low-discrepancy point sets via graph neural networks
2024-Oct, Proceedings of the National Academy of Sciences of the United States of America
IF:9.4Q1
DOI:10.1073/pnas.2409913121
PMID:39325425
|
研究论文 | 本文提出了一种名为消息传递蒙特卡洛(MPMC)的新型低差异点集生成方法,利用图神经网络工具实现 | 首次将几何深度学习方法应用于低差异点集生成,提出MPMC点集并在低维和小点数情况下达到最优或接近最优差异 | 目前主要适用于低维和小规模点集的情况 | 开发更有效的低差异点集生成方法以提高数值积分、计算机视觉等领域的性能 | 低差异点集的生成方法 | 机器学习 | NA | 几何深度学习 | 图神经网络(GNN) | 空间点集数据 | 低维和小规模点集 | NA | NA | NA | NA |
| 19114 | 2025-03-28 |
Using deep learning to improve the intelligibility of a target speaker in noisy multi-talker environments for people with normal hearing and hearing loss
2024-07-01, The Journal of the Acoustical Society of America
IF:2.1Q1
DOI:10.1121/10.0028007
PMID:39082692
|
研究论文 | 本研究开发了一种基于深度学习的算法,用于在嘈杂的多说话者环境中提取目标说话者的声音,以提高正常听力和听力损失人群的语音可懂度 | 提出了一种准因果深度学习算法,能够根据简短的注册话语从多个并发说话者和背景噪声中提取目标说话者的声音,且该算法能泛化到未见过的说话者、不同说话者数量和相对说话者水平以及不同的语音语料库 | 算法在更复杂或不同的噪声环境中的表现尚未验证 | 提高嘈杂多说话者环境中的语音可懂度 | 正常听力和听力损失人群 | 机器学习 | 听力损失 | 深度学习 | NA | 语音 | 正常听力和听力损失听众参与的双盲句子识别测试 | NA | NA | NA | NA |
| 19115 | 2025-10-07 |
Developing deep learning-based strategies to predict the risk of hepatocellular carcinoma among patients with nonalcoholic fatty liver disease from electronic health records
2024-04, Journal of biomedical informatics
IF:4.0Q2
DOI:10.1016/j.jbi.2024.104626
PMID:38521180
|
研究论文 | 本研究开发了基于深度学习的策略来预测非酒精性脂肪肝患者患肝细胞癌的风险 | 提出了处理电子健康记录中延迟诊断问题的后向掩码方案,并系统评估了时间变化协变量、数据稀缺和协变量不平衡对深度学习性能的影响 | 研究主要基于结构化电子健康记录数据,可能未考虑非结构化临床数据 | 提高非酒精性脂肪肝患者肝细胞癌风险预测的准确性 | 非酒精性脂肪肝患者 | 机器学习 | 肝细胞癌, 非酒精性脂肪肝 | 电子健康记录分析 | 深度学习 | 结构化电子健康记录 | 220,838名非酒精性脂肪肝患者 | NA | NA | NA | NA |
| 19116 | 2025-10-07 |
Extracting Drug-Protein Relation from Literature Using Ensembles of Biomedical Transformers
2024-Jan-25, Studies in health technology and informatics
DOI:10.3233/SHTI231043
PMID:38269887
|
研究论文 | 本文提出基于生物医学Transformer模型的集成方法,用于从生物医学文献中自动提取药物-蛋白质关系 | 采用在生物医学数据上预训练的Transformer模型构建集成方法,在BioCreative-VII DrugProt任务中取得优异表现 | 未详细讨论模型在不同类型药物-蛋白质关系上的性能差异 | 开发自动从生物医学文献中提取药物-蛋白质关系的方法 | PubMed摘要中的药物/化学物质与蛋白质实体关系 | 自然语言处理 | NA | 文本挖掘 | Transformer | 文本 | 主要语料库10,750篇摘要,大规模语料库240万篇文档 | NA | 生物医学Transformer模型 | F1-score | NA |
| 19117 | 2025-10-07 |
Use of the deep learning approach to measure alveolar bone level
2022-03, Journal of clinical periodontology
IF:5.8Q1
DOI:10.1111/jcpe.13574
PMID:34879437
|
研究论文 | 开发了一种基于深度学习的方法,通过牙周X线片测量牙槽骨水平以辅助牙周诊断 | 整合了三个分割网络(骨区域、牙齿、釉牙骨质界)和图像分析来测量放射线骨水平并分配放射线骨丧失分期 | 模型需要进一步优化并通过更多图像验证以促进其应用 | 使用深度卷积神经网络测量放射线牙槽骨水平以辅助牙周诊断 | 牙周X线片中的牙槽骨 | 计算机视觉 | 牙周病 | 放射线成像 | CNN | 图像 | NA | NA | NA | Dice相似系数, AUC, 准确率 | NA |
| 19118 | 2025-10-07 |
Deep representation learning of patient data from Electronic Health Records (EHR): A systematic review
2021-03, Journal of biomedical informatics
IF:4.0Q2
DOI:10.1016/j.jbi.2020.103671
PMID:33387683
|
系统综述 | 本文对使用深度学习从电子健康记录中学习患者表示的研究进行了系统性回顾和方法学分析 | 首次从方法学角度对患者表示学习领域进行系统和定量分析,揭示了该领域的发展趋势和技术特点 | 纳入研究主要关注单一疾病预测,缺乏对患者复杂机制的整体考量,且多数研究因隐私问题缺乏基准数据集 | 系统回顾和分析基于电子健康记录的患者表示学习方法 | 从五个数据库筛选出的49篇相关研究论文 | 自然语言处理 | NA | 深度学习 | RNN, LSTM, GRU | 电子健康记录 | 49篇研究论文 | NA | 循环神经网络, 长短期记忆网络, 门控循环单元 | 交叉熵损失 | NA |
| 19119 | 2025-02-12 |
Response to Letter to the Editor Regarding: Multimodal Deep Learning-Based Radiomics Approach for Predicting Surgical Outcomes in Patients With Cervical Ossification of the Posterior Longitudinal Ligament
2025-Apr-15, Spine
IF:2.6Q1
DOI:10.1097/BRS.0000000000005296
PMID:39931786
|
NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
| 19120 | 2025-10-07 |
Neoadjuvant Chemotherapy Response in Triple-Negative Apocrine Carcinoma: Comparing Apocrine Morphology, Androgen Receptor, and Immune Phenotypes
2025-Apr-01, Archives of pathology & laboratory medicine
IF:3.7Q1
DOI:10.5858/arpa.2023-0561-OA
PMID:38960391
|
研究论文 | 本研究评估了三阴性乳腺癌对新辅助化疗的反应,并分析了顶浆分泌形态、雄激素受体状态和肿瘤浸润淋巴细胞的影响 | 首次在TNBC中系统比较顶浆分泌形态、AR表达和免疫表型对NAC反应的预测价值,并采用深度学习模型量化TILs | 单中心回顾性研究,样本量有限,顶浆分泌形态亚型病例数较少 | 评估三阴性乳腺癌对新辅助化疗的反应及其预测因素 | 232例接受新辅助化疗后手术切除的三阴性乳腺癌患者 | 数字病理学 | 乳腺癌 | 免疫组织化学,深度学习 | 深度学习模型 | 病理图像,临床数据 | 232例TNBC患者 | NA | NA | 病理完全缓解率,P值 | NA |