深度学习在生物医药领域中的应用

本数据库通过收集和整理最新科研文献信息而得,供了解领域前沿进展之用。数据源自 PubMed Data ,每日自动更新,已收录文献数量参见 统计表格。表格内容由 GPT 自动整理,可能存在错误或遗漏,请使用时务必注意核实!

如有建议或合作意向,欢迎联系 linlin.yan(AT)bioinfo.app 或 微信 yanlinlin82。本项目遵循 MIT 许可 发布,欢迎下载 源码 自行修改使用。如觉得不错,还请不吝 给我打赏,你的支持是我继续创新的重要动力!

Sample Image
添加微信请说明来意
Sample Image
微信赞赏

除通过在线浏览外,为方便用户离线查阅,本站也提供 付费下载(定价10元)。之所以考虑收费,是因为批量扫描这些文献并整理也是有一定成本的,还请理解并多多支持。本站数据会持续更新,而仅需一次付费,未来就可以随时重新下载到最新版本数据。

当前筛选条件: [分区不过滤] [IF不过滤] [发表日期不过滤] [清除筛选条件]
当前共找到 24293 篇文献,本页显示第 19301 - 19320 篇。
序号 推送日期 文章 类型 简述 创新点 不足 研究目的 研究对象 领域 病种 技术 模型 数据类型 样本量
19301 2024-08-20
Deep learning links histology, molecular signatures and prognosis in cancer
2020-08, Nature cancer IF:23.5Q1
NA NA NA NA NA NA NA NA NA NA NA NA
19302 2024-08-20
The ENIGMA-Epilepsy working group: Mapping disease from large data sets
2020-May-29, Human brain mapping IF:3.5Q1
review 本文综述了ENIGMA-Epilepsy工作组通过大规模数据集映射癫痫疾病的研究项目,包括结构MRI、扩散张量成像(DTI)和静息态功能MRI(rsfMRI)等技术,以及采用的先进方法如结构协变和事件驱动模型分析 ENIGMA-Epilepsy工作组通过增加样本量、借鉴其他ENIGMA项目的方法和理念,以及建立合作科学家和临床医生的团队,加强了癫痫神经科学的研究 NA 加强癫痫神经科学研究,推动稳健的科研进展 癫痫疾病的脑部过程和病理生理学 数字病理学 癫痫 MRI, DTI, rsfMRI 结构协变模型, 事件驱动模型 影像数据 大规模样本
19303 2024-08-19
Enhanced detection of Aspergillus flavus in peanut kernels using a multi-scale attention transformer (MSAT): Advancements in food safety and contamination analysis
2024-Oct-02, International journal of food microbiology IF:5.0Q1
研究论文 本研究使用多尺度注意力变换器(MSAT)结合高光谱成像技术,对受多种黄曲霉菌污染的花生仁进行分类 MSAT模型通过其复杂的多尺度注意力机制,显著优于传统的深度学习模型,特别是在分类能力上 MSAT模型在区分受黄曲霉素产生菌和非黄曲霉素产生菌污染的花生仁时面临挑战 提高食品质量和安全领域中黄曲霉菌污染的检测准确性和速度 受黄曲霉菌污染的花生仁 计算机视觉 NA 高光谱成像 多尺度注意力变换器(MSAT) 图像 NA
19304 2024-08-07
Corrigendum to "Advancing deep learning-based acoustic leak detection methods towards application for water distribution systems from a data-centric perspective" [Water Research 261(2024) 121999]
2024-Sep-15, Water research IF:11.4Q1
NA NA NA NA NA NA NA NA NA NA NA NA
19305 2024-08-19
Deep learning reconstructed T2-weighted Dixon imaging of the spine: Impact on acquisition time and image quality
2024-Sep, European journal of radiology IF:3.2Q1
研究论文 评估基于深度学习的T2 Dixon序列(T2DL)对脊柱成像的图像质量和采集时间的影响 提出了一种新的基于深度学习的T2 Dixon序列(T2DL),能够在显著减少采集时间的同时保持与标准T2 Dixon序列(T2std)相当的图像质量 T2DL显示出更多的带状伪影,尽管这并未显著影响读者的诊断信心 评估T2DL序列在脊柱成像中的图像质量和采集时间的影响 44名连续患者,他们在2022年9月至2023年3月期间因临床需要进行腰椎MRI检查 计算机视觉 NA MRI 深度学习 图像 44名患者
19306 2024-08-19
Differentiation of tuberculous and brucellar spondylitis using conventional MRI-based deep learning algorithms
2024-Sep, European journal of radiology IF:3.2Q1
研究论文 研究基于常规MRI的深度学习算法区分结核性脊椎炎和布鲁氏脊椎炎的可行性 使用基于VGG19、ResNet18、VGG16和DenseNet121的深度学习模型,结合T1WI、T2WI和FS T2WI图像,实现了优于单序列模型的诊断效率,并且性能超过两位放射科医生 NA 探索基于常规MRI的深度学习技术区分结核性脊椎炎和布鲁氏脊椎炎的可行性 结核性脊椎炎和布鲁氏脊椎炎的诊断 机器学习 NA 深度学习 VGG19, ResNet18, VGG16, DenseNet121 MRI图像 383名患者,包括182名结核性脊椎炎患者和201名布鲁氏脊椎炎患者
19307 2024-08-19
Diagnostic performance of an AI algorithm for the detection of appendicular bone fractures in pediatric patients
2024-Sep, European journal of radiology IF:3.2Q1
研究论文 评估一种人工智能算法在常规X射线摄影中检测儿科患者四肢骨折的诊断性能 使用先前在成人和儿科患者中训练的人工智能算法来检测儿科患者的急性四肢骨折 回顾性研究,样本仅限于儿科患者的四肢X射线图像 评估人工智能算法在检测儿科患者四肢骨折中的诊断性能 儿科患者(年龄<17岁)的四肢X射线图像 计算机视觉 NA 深度学习 NA 图像 600张X射线图像,包括312名男性和288名女性,平均年龄8.9±4.5岁
19308 2024-08-19
Improving diagnostic confidence in low-dose dual-energy CTE with low energy level and deep learning reconstruction
2024-Sep, European journal of radiology IF:3.2Q1
研究论文 本研究旨在展示使用50 keV虚拟单色图像结合深度学习图像重建(DLIR)在低剂量双能量CT肠造影(CTE)中的价值 使用50 keV虚拟单色图像和深度学习图像重建技术,能够在降低辐射剂量的同时提供高质量的图像,显著提高诊断信心 NA 验证50 keV虚拟单色图像结合深度学习图像重建在低剂量双能量CT肠造影中的应用价值 114名参与者(62%男性,41.9±16岁)的双能量CT肠造影图像 数字病理学 克罗恩病 双能量CT肠造影 深度学习图像重建(DLIR) 图像 114名参与者
19309 2024-08-19
Super-resolution deep learning reconstruction approach for enhanced visualization in lumbar spine MR bone imaging
2024-Sep, European journal of radiology IF:3.2Q1
研究论文 本研究评估了基于超分辨率深度学习重建(SR-DLR)方法在腰椎磁共振(MR)骨成像中的效果,该方法利用k空间数据,使用3D多回波同相序列进行图像重建。 本研究首次采用基于k空间数据的SR-DLR方法,显著提高了腰椎MR骨成像的图像质量。 本研究为回顾性研究,样本量较小,且仅限于特定时间段内的患者数据。 评估SR-DLR方法在提高腰椎MR骨成像质量中的有效性。 研究对象为29名在2023年1月至4月期间接受腰椎MRI检查的患者。 计算机视觉 NA 超分辨率深度学习重建(SR-DLR) 深度学习模型 图像 29名患者
19310 2024-08-19
Development and validation of a deep learning-based method for automatic measurement of uterus, fibroid, and ablated volume in MRI after MR-HIFU treatment of uterine fibroids
2024-Sep, European journal of radiology IF:3.2Q1
研究论文 本文开发并验证了一种基于深度学习的自动测量方法,用于在MR-HIFU治疗后通过MRI测量子宫、肌瘤和消融体积。 该研究提出了一种自动化的计算机辅助方法,用于客观量化MR-HIFU治疗后的结果参数,相较于传统的视觉检查方法,提供了更客观的结果量化。 该方法的鲁棒性需要在未来的研究中进一步验证,以确保其在临床实践中的应用。 开发并评估一种基于深度学习的分割算法,用于自动量化MRI中的子宫、子宫肌瘤和非灌注体积(NPV),以计算NPV/TFL。 研究对象为115名接受或即将接受MR-HIFU治疗的子宫肌瘤患者。 机器学习 妇科疾病 MRI 神经网络 图像 115名子宫肌瘤患者
19311 2024-08-19
ChatGPT performance on the American Shoulder and Elbow Surgeons maintenance of certification exam
2024-Sep, Journal of shoulder and elbow surgery IF:2.9Q1
研究论文 本研究比较了ChatGPT 3.5、GPT-4和专业培训的外科医生在2023年美国肩肘外科医生(ASES)维持认证(MOC)自我评估考试中的表现 首次测试大型语言模型(LLMs)在手术亚专科考试中的表现 ChatGPT在图像为基础的问题上表现不如人类 评估大型语言模型在专业外科考试中的表现 ChatGPT 3.5、GPT-4和专业培训的外科医生 NA NA 深度学习 LLMs 文本和图像 NA
19312 2024-08-19
SleepBoost: a multi-level tree-based ensemble model for automatic sleep stage classification
2024-Sep, Medical & biological engineering & computing IF:2.6Q3
研究论文 本文介绍了一种名为SleepBoost的多层次树基集成模型,用于自动睡眠阶段分类 SleepBoost模型通过集成三个基本线性模型并采用新颖的基于奖励的自适应权重分配机制,提高了模型的透明度和性能 NA 旨在提高自动睡眠阶段分类的透明度和性能,以促进其在临床中的应用 自动睡眠阶段分类 机器学习 NA 多层次树基集成模型 树基集成模型 时间域和频率域特征 使用了Sleep-EDF-20数据集
19313 2024-08-19
AndroPred: an artificial intelligence-based model for predicting androgen receptor inhibitors
2024-Sep, Journal of biomolecular structure & dynamics IF:2.7Q2
研究论文 本文介绍了基于人工智能的模型AndroPred,用于预测雄激素受体抑制剂 使用深度学习模型DNN在预测雄激素受体抑制剂方面表现出92.18%和93.05%的准确率 需要进一步的实验验证和前瞻性测试来确认模型的预测能力和实际应用性 开发一种有效的方法来加速识别前列腺癌药物中的新型雄激素受体抑制剂 雄激素受体抑制剂的预测 机器学习 前列腺癌 NA DNN 分子描述符(1D、2D和分子指纹) 2242个化合物
19314 2024-08-19
Uncertain prediction of deformable image registration on lung CT using multi-category features and supervised learning
2024-Sep, Medical & biological engineering & computing IF:2.6Q3
研究论文 本文提出了一种基于多类别特征和监督学习的自动方法来预测肺部CT图像的可变形配准不确定性 引入三种类型的特征(变形场统计特征、变形场生理现实特征和图像相似性特征)来训练随机森林回归器,用于局部配准不确定性预测,并采用空间自适应随机扰动策略来准确模拟配准不确定性的空间分布 实验仅在三个公开的胸部CT图像数据集上进行,可能需要进一步验证在其他数据集上的泛化能力 提高临床应用中配准方法的安全性和可靠性 肺部CT图像的可变形配准不确定性 计算机视觉 肺部疾病 随机森林回归器 随机森林 图像 17对图像用于训练模型,9对图像用于评估模型
19315 2024-08-19
Recognition of diabetic retinopathy and macular edema using deep learning
2024-Sep, Medical & biological engineering & computing IF:2.6Q3
研究论文 本文提出了一种使用深度学习技术识别糖尿病视网膜病变(DR)和糖尿病黄斑水肿(DME)的方法 采用了改进的CornerNet方法与DenseNet-100结合,能够准确地定位和分类与DR和DME相关的病变 NA 旨在开发一种自动化的方法来识别糖尿病视网膜病变和糖尿病黄斑水肿,以替代传统的人工图像分析方法 糖尿病视网膜病变和糖尿病黄斑水肿 计算机视觉 糖尿病视网膜病变 深度学习 CNN 图像 使用了EyePACS、IDRiD、APTOS-2019和Diaretdb1等多个数据集进行模型训练和测试
19316 2024-08-19
Adversarial attacks and adversarial training for burn image segmentation based on deep learning
2024-Sep, Medical & biological engineering & computing IF:2.6Q3
research paper 本文针对深度学习在烧伤图像分割中受到对抗攻击的影响,提出了一种基于自然现象启发的攻击方法和专门针对烧伤图像分割的对抗训练方法 提出了一种新的对抗训练方法,该方法在烧伤图像分割中提高了对抗样本的分割准确率,并减少了训练时间 NA 解决物理上有意义的干扰对现有深度学习模型在烧伤图像分割应用中的影响 烧伤图像分割 computer vision NA deep learning CNN image 使用了自己的烧伤数据集
19317 2024-08-19
Ensemble learning for retinal disease recognition under limited resources
2024-Sep, Medical & biological engineering & computing IF:2.6Q3
研究论文 本文介绍了一种在资源有限条件下识别视网膜疾病的新型集成学习机制 该机制利用多个预训练模型的知识,能够在有限的标记数据下建立稳健模型,无需大量参数 文章未明确提及具体的局限性 旨在开发一种在资源有限条件下有效识别视网膜疾病的自动化图像分析方法 视网膜光学相干断层扫描(OCT)图像 计算机视觉 NA 深度学习(DL) 集成学习模型 图像 实际数据集上的综合实验表明,集成模型在稀疏标记数据下表现优于基准模型
19318 2024-08-19
Deep learning for detecting and characterizing oil and gas well pads in satellite imagery
2024-Aug-15, Nature communications IF:14.7Q1
研究论文 本文提出了一种利用高分辨率卫星图像通过深度学习方法自动绘制油气井垫和储罐的技术 该方法在专家策划的数据集上实现了高精度,能够检测到现有数据集中未包含的大量油气井垫和储罐 该方法仍存在一些挑战,解决这些挑战后,可以实现全球可扩展的公共框架来绘制油气基础设施 为了填补全国和全球油气基础设施数据的空白,实现一个透明、全面和准确的油气基础设施地理空间数据库 油气井垫和储罐 计算机视觉 NA 深度学习 NA 图像 在二叠纪和丹佛-朱尔斯堡盆地进行了验证,检测到超过70,000个油气井垫和超过169,000个储罐
19319 2024-08-19
Artificial organic afferent nerves enable closed-loop tactile feedback for intelligent robot
2024-Aug-15, Nature communications IF:14.7Q1
研究论文 本文报道了一种人工有机传入神经,通过集成压力激活的有机电化学突触晶体管和人工机械感受器,实现了低操作偏置(-0.6 V),并展示了其在智能机器人中的应用,能够实现闭环触觉反馈。 本文创新性地开发了一种人工有机传入神经,能够模拟突触行为,为下一代智能神经机器人和低功耗仿生电子设备提供了突破。 NA 研究目的是模拟触觉感觉神经,以实现机器人中的人工智能高级感觉功能。 研究对象是人工有机传入神经及其在智能机器人中的应用。 机器人学 NA 有机电化学突触晶体管 深度学习模型 触觉模式信号 NA
19320 2024-08-19
An assessment of global land susceptibility to wind erosion based on deep-active learning modelling and interpretation techniques
2024-Aug-15, Scientific reports IF:3.8Q1
研究论文 本研究首次开发了一种基于深度学习(DL)和主动学习(AL)模型及其组合(如RNN、RNN-AL、GRU和GRU-AL)以及三种解释技术(协同矩阵、SHAP决策图和ALE图)的全球土地风蚀敏感性空间准确映射方法 首次结合深度学习和主动学习模型及其组合,并应用三种解释技术来映射全球土地风蚀敏感性 NA 开发一种新的方法来准确映射全球土地风蚀敏感性,以减轻其破坏性后果 全球土地风蚀敏感性 机器学习 NA 深度学习(DL)、主动学习(AL)、Harris Hawk优化特征选择算法 RNN、RNN-AL、GRU、GRU-AL 空间数据 全球土地,分为非常低、低、中等、高和非常高敏感性等级
回到顶部