本数据库通过收集和整理最新科研文献信息而得,供了解领域前沿进展之用。数据源自 PubMed Data ,每日自动更新,已收录文献数量参见 统计表格。表格内容由 GPT 自动整理,可能存在错误或遗漏,请使用时务必注意核实!
如有建议或合作意向,欢迎联系 linlin.yan(AT)bioinfo.app 或 微信 yanlinlin82。本项目遵循 MIT 许可 发布,欢迎下载 源码 自行修改使用。如觉得不错,还请不吝 给我打赏,你的支持是我继续创新的重要动力!
除通过在线浏览外,为方便用户离线查阅,本站也提供 付费下载(定价10元)。之所以考虑收费,是因为批量扫描这些文献并整理也是有一定成本的,还请理解并多多支持。本站数据会持续更新,而仅需一次付费,未来就可以随时重新下载到最新版本数据。
序号 | 推送日期 | 文章 | 类型 | 简述 | 创新点 | 不足 | 研究目的 | 研究对象 | 领域 | 病种 | 技术 | 模型 | 数据类型 | 样本量 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
19321 | 2024-08-17 |
A mutual reconstruction network model for few-shot classification of histological images: addressing interclass similarity and intraclass diversity
2024-Aug-01, Quantitative imaging in medicine and surgery
IF:2.9Q2
DOI:10.21037/qims-24-253
PMID:39144045
|
研究论文 | 本文提出了一种互重建网络模型,用于解决组织学图像少样本分类中的类间相似性和类内多样性问题 | 引入特征增强模块和互重建模块,增强类间差异并减少类内方差,提高了少样本分类性能 | NA | 克服深度学习在组织学图像分类中数据稀缺的挑战 | 组织学图像的自动分类 | 计算机视觉 | 癌症 | 深度学习 | 互重建网络模型 | 图像 | 使用了一个专门创建的少样本组织学图像数据集进行评估 |
19322 | 2024-08-17 |
Artificial intelligence improves the diagnosis of human leukocyte antigen (HLA)-B27-negative axial spondyloarthritis based on multi-sequence magnetic resonance imaging and clinical features
2024-Aug-01, Quantitative imaging in medicine and surgery
IF:2.9Q2
DOI:10.21037/qims-24-729
PMID:39144059
|
研究论文 | 本研究开发了一种名为NegSpA-AI的人工智能工具,利用骶髂关节磁共振成像和临床特征来提高HLA-B27阴性轴向脊柱关节炎的诊断 | 通过深度学习网络开发的NegSpA-AI工具,能够有效区分轴向脊柱关节炎和非轴向脊柱关节炎,其性能优于独立工作的初级风湿病学家 | NA | 开发一种人工智能工具,以提高HLA-B27阴性轴向脊柱关节炎的诊断准确性 | HLA-B27阴性轴向脊柱关节炎患者 | 机器学习 | 风湿病 | 磁共振成像 | 深度学习网络 | 图像 | 共包括454名HLA-B27阴性患者,分为训练集(328名)、内部测试集(72名)和独立外部测试集(54名),以及进一步招募的87名患者用于构建前瞻性测试集 |
19323 | 2024-08-17 |
Study of active food processing technology using computer vision and AI in coffee roasting
2024-Aug, Food science and biotechnology
IF:2.4Q3
DOI:10.1007/s10068-023-01507-7
PMID:39144198
|
研究论文 | 本研究利用计算机视觉和人工智能技术,开发了一种咖啡豆分类模型(CBCM),用于咖啡烘焙过程中的质量控制和优化 | 本研究创新性地结合了计算机视觉和深度学习技术,实现了在复杂环境下的咖啡豆分类,并能准确区分咖啡豆,避免障碍和空隙 | NA | 研究目的是开发一种集成计算机视觉和深度学习技术的解决方案,以实现食品加工过程中的质量控制和优化 | 研究对象是咖啡烘焙过程中的咖啡豆 | 计算机视觉 | NA | 深度学习 | 机器学习模型 | 图像 | 137个样本 |
19324 | 2024-08-17 |
Revolutionizing early Alzheimer's disease and mild cognitive impairment diagnosis: a deep learning MRI meta-analysis
2024-Aug, Arquivos de neuro-psiquiatria
IF:1.0Q4
DOI:10.1055/s-0044-1788657
PMID:39146974
|
meta-analysis | 本文通过meta分析评估了深度学习在磁共振成像(MRI)诊断阿尔茨海默病(AD)和轻度认知障碍(MCI)中的准确性 | 将深度学习与人工智能(AI)结合到磁共振成像(MRI)分析中,提供了一种无偏见且高度准确的诊断方法 | NA | 旨在分析深度学习在MRI图像上对AD和MCI模型的诊断准确性 | 阿尔茨海默病(AD)和轻度认知障碍(MCI)的诊断 | machine learning | geriatric disease | MRI | deep learning | image | 共识别出18项符合条件的研究 |
19325 | 2024-08-17 |
Region of Interest Detection in Melanocytic Skin Tumor Whole Slide Images-Nevus and Melanoma
2024-Jul-23, Cancers
IF:4.5Q1
DOI:10.3390/cancers16152616
PMID:39123344
|
研究论文 | 本文研究了在黑色素细胞皮肤肿瘤全切片图像中自动检测感兴趣区域的方法,使用深度学习技术提高了癌症诊断的速度和准确性 | 提出了一个内部开发的深度学习方法,用于在全切片图像级别上分类痣和黑色素瘤,并在测试数据集上展示了92.3%的分类准确率 | 研究仅限于黑色素细胞皮肤肿瘤数据集,尚未扩展到其他类型的肿瘤 | 开发一种自动化的方法来检测组织病理学图像中的感兴趣区域,以辅助临床实践中的癌症诊断 | 主要研究对象是黑色素瘤和痣的全切片图像 | 数字病理学 | 皮肤肿瘤 | 深度学习 | NA | 图像 | 使用了160张苏木精和伊红全切片图像,包括86张原发性黑色素瘤和74张痣的图像 |
19326 | 2024-08-17 |
Fast reconstruction of EEG signal compression sensing based on deep learning
2024-03-01, Scientific reports
IF:3.8Q1
DOI:10.1038/s41598-024-55334-9
PMID:38429300
|
研究论文 | 本文提出了一种基于深度学习和压缩感知的非迭代快速脑电信号重建算法 | 该算法使用改进的残差网络模型和一维扩张卷积提取脑电信号特征,直接学习测量值与原始信号之间的非线性映射关系,实现快速准确的脑电信号重建 | NA | 提高脑电信号重建的准确性和速度 | 脑电信号 | 机器学习 | NA | 压缩感知 | 残差网络 | 信号 | BCI竞赛公开数据集 |
19327 | 2024-08-17 |
A reliable diabetic retinopathy grading via transfer learning and ensemble learning with quadratic weighted kappa metric
2024-Feb-06, BMC medical informatics and decision making
IF:3.3Q2
DOI:10.1186/s12911-024-02446-x
PMID:38321416
|
研究论文 | 本文提出了一种基于迁移学习和集成学习的糖尿病视网膜病变分级方法,使用二次加权kappa指标进行评估 | 利用预训练模型权重减少训练时间和资源需求,采用数据增强技术改善特征和泛化能力,结合迁移学习和图像增强技术提高分级准确性 | NA | 提高糖尿病视网膜病变的分级准确性和效率 | 糖尿病视网膜病变 | 机器学习 | 糖尿病 | 迁移学习 | 集成学习 | 图像 | 使用了Eyepacs、Aptos和Messidor数据集 |
19328 | 2024-08-17 |
CucumberAI: Cucumber Fruit Morphology Identification System Based on Artificial Intelligence
2024, Plant phenomics (Washington, D.C.)
DOI:10.34133/plantphenomics.0193
PMID:39144674
|
研究论文 | 本文提出了一种基于人工智能的黄瓜果实形态特征识别框架和软件CucumberAI,结合图像处理技术和深度学习模型,高效识别多达51种黄瓜特征 | 引入了黄瓜轮廓提取和果实分割的算法,并结合多种深度学习模型进行果实形态识别 | NA | 提高黄瓜育种效率和完善瓜果发育模型 | 黄瓜果实的形态特征 | 计算机视觉 | NA | 图像处理技术 | CNN | 图像 | NA |
19329 | 2024-08-17 |
Deep Learning for Strain Field Customization in Bioreactor with Dielectric Elastomer Actuator Array
2024, Cyborg and bionic systems (Washington, D.C.)
DOI:10.34133/cbsystems.0155
PMID:39144697
|
研究论文 | 本文介绍了一种使用9×9独立可控介电弹性体执行器阵列的生物反应器,通过基于图像回归的机器学习技术实现对复杂应变场的定制 | 采用多层感知器(MLP)和超分辨率生成对抗网络(SRGAN)进行逆向和正向控制,以实现对目标应变场的复制和快速预测 | NA | 解决生物反应器技术中根据特定要求定制复杂应变场的挑战 | 生物反应器中的应变场控制 | 生物力学 | NA | 有限元分析(FEA) | 多层感知器(MLP),超分辨率生成对抗网络(SRGAN) | 图像 | 10,000个不同的输出应变场图像用于训练集 |
19330 | 2024-08-17 |
Prediction of protein content in paddy rice (Oryza sativa L.) combining near-infrared spectroscopy and deep-learning algorithm
2024, Frontiers in plant science
IF:4.1Q1
DOI:10.3389/fpls.2024.1398762
PMID:39145192
|
研究论文 | 本研究利用近红外光谱和深度学习技术开发了一种非破坏性预测带壳稻米(粳稻)蛋白质含量的方法 | 本研究首次将深度神经网络(DNN)与近红外光谱技术结合,用于非破坏性预测稻米的蛋白质含量,并取得了较高的预测准确度 | NA | 开发一种快速且非破坏性的方法来测量收获和储存阶段稻米的蛋白质含量 | 带壳稻米(粳稻)和糙米的蛋白质含量 | 机器学习 | NA | 近红外光谱 | 深度神经网络(DNN) | 光谱数据 | 1800个带壳稻米光谱和1200个糙米光谱 |
19331 | 2024-08-17 |
Emerging trends in gait recognition based on deep learning: a survey
2024, PeerJ. Computer science
DOI:10.7717/peerj-cs.2158
PMID:39145199
|
综述 | 本文综述了基于深度学习的步态识别技术的最新进展,探讨了其在法医、安全和刑事调查中的应用,并分析了当前面临的挑战和未来研究方向 | 文章介绍了多种基于神经网络的步态识别模型,如GA-ICDNet、MSTFE、GaitNet等,这些模型在不同行走条件下展示了高准确性 | 步态识别面临多种挑战,包括行走条件、视角和衣着变化等,尽管深度神经网络在一定程度上能解决这些问题,但仍存在改进空间 | 旨在综述和分析基于深度学习的步态识别技术的发展及其在多个领域的应用 | 步态识别技术及其在法医、安全和刑事调查中的应用 | 计算机视觉 | NA | 深度学习 | CNN, RNN, 注意力机制 | 图像 | NA |
19332 | 2024-08-17 |
A DoS attack detection method based on adversarial neural network
2024, PeerJ. Computer science
DOI:10.7717/peerj-cs.2162
PMID:39145212
|
研究论文 | 本文研究了基于深度学习的分布式拒绝服务(DoS)攻击检测系统,并提出了一种改进的条件Wasserstein生成对抗网络与逆变器(ICWGANInverter)模型来提高检测性能 | 提出了ICWGANInverter模型,该模型能够自动学习原始数据的抽象信息,并通过重建误差方法识别最佳分类标签 | NA | 分析深度学习模型在检测拒绝服务(DoS)攻击中的影响,并提出改进的检测方法 | 拒绝服务(DoS)攻击的检测 | 机器学习 | NA | 深度学习 | 生成对抗网络(GAN) | 网络流量数据 | 使用了NSL-KDD入侵检测数据集进行测试 |
19333 | 2024-08-17 |
Pashto script and graphics detection in camera captured Pashto document images using deep learning model
2024, PeerJ. Computer science
DOI:10.7717/peerj-cs.2089
PMID:39145223
|
研究论文 | 本研究首次探索了Pashto文档图像中的文本和图形检测,提出了一种基于深度学习的分类器 | 首次针对Pashto语言文档图像进行文本和图形检测,并创建了一个包含超过1000张Pashto文档图像的真实数据集 | 仅评估了测试集中的300张图像 | 开发一种能够检测Pashto文档图像中文本和图形的深度学习模型 | Pashto文档图像中的文本和图形 | 计算机视觉 | NA | 卷积神经网络(CNN) | Single-Shot Detector(SSD) | 图像 | 超过1000张Pashto文档图像 |
19334 | 2024-08-17 |
ProcGCN: detecting malicious process in memory based on DGCNN
2024, PeerJ. Computer science
DOI:10.7717/peerj-cs.2193
PMID:39145247
|
研究论文 | 本文提出了一种基于DGCNN的深度学习模型ProcGCN,用于检测内存图像中的恶意进程 | 相较于基于进程字节特征的方法,本文采用函数调用特征,能更稳健地表示恶意软件的行为 | NA | 旨在提高内存取证中恶意进程检测的准确性和速度 | 内存图像中的恶意进程 | 机器学习 | NA | DGCNN | GCN | 图像 | 使用公开数据集进行实验 |
19335 | 2024-08-17 |
Machine-learning-based Structural Analysis of Interactions between Antibodies and Antigens
2023-Dec-08, bioRxiv : the preprint server for biology
DOI:10.1101/2023.12.06.570397
PMID:38106177
|
研究论文 | 本文通过深度学习模型分析抗体与抗原之间的结构相互作用 | 本研究能够高精度地区分抗体-抗原复合物与其他类型的蛋白质-蛋白质复合物,并能从其他常见蛋白质结合区域中识别抗原 | 模型无法预测特定抗体与其抗原的配对关系 | 旨在通过计算分析抗体与抗原的相互作用,促进对体液免疫分子机制的理解并推动新疗法的设计 | 抗体与抗原的相互作用 | 机器学习 | NA | 深度学习 | 深度学习模型 | 蛋白质结构数据 | NA |
19336 | 2024-08-17 |
Acral melanoma detection using dermoscopic images and convolutional neural networks
2021-Oct-07, Visual computing for industry, biomedicine, and art
DOI:10.1186/s42492-021-00091-z
PMID:34618260
|
研究论文 | 本文研究了使用皮肤镜图像和卷积神经网络对肢端黑色素瘤进行分类的有效性 | 提出了一种新的深度学习模型,用于皮肤癌分类,并采用了图像处理和数据增强技术来开发一个健壮的自动化系统 | NA | 研究皮肤镜和深度学习在分类黑色素瘤亚型中的效果 | 肢端黑色素瘤 | 计算机视觉 | 皮肤癌 | 卷积神经网络 | 七层深度卷积网络 | 图像 | 使用来自韩国延世大学医疗系统的皮肤镜图像数据集 |
19337 | 2024-08-17 |
Deep learning features from diffusion tensor imaging improve glioma stratification and identify risk groups with distinct molecular pathway activities
2021-Oct, EBioMedicine
IF:9.7Q1
DOI:10.1016/j.ebiom.2021.103583
PMID:34563923
|
研究论文 | 本研究开发并验证了一种基于扩散张量成像(DTI)的深度学习特征(DLS),用于预测浸润性胶质瘤患者的总体生存率,并探讨了DLS背后的生物学通路 | 本研究首次将深度学习特征应用于DTI数据,以改善胶质瘤的分层,并识别出具有不同分子通路活性的风险组 | NA | 开发和验证一种基于DTI的深度学习特征,用于预测胶质瘤患者的总体生存率,并探讨相关的生物学通路 | 浸润性胶质瘤患者 | 机器学习 | 脑肿瘤 | 扩散张量成像(DTI) | 深度学习 | 图像 | 深度学习队列688例,放射基因组学队列78例,TCGA数据库663例,CGGA数据库657例 |
19338 | 2024-08-16 |
AFFnet - a deep convolutional neural network for the detection of atypical femur fractures from anteriorposterior radiographs
2024-Oct, Bone
IF:3.5Q2
DOI:10.1016/j.bone.2024.117215
PMID:39074569
|
research paper | 本研究开发了一种基于深度学习模型的AI应用,特别是卷积神经网络(CNNs),用于从前瞻性X光片中检测非典型股骨骨折(AFFs) | 本研究开发了AFFnet模型,使用预训练的ResNet-50主干和创新的Box Attention Guide(BAG)模块,以增强模型的学习能力 | NA | 研究AI技术在非典型股骨骨折诊断中的应用 | 非典型股骨骨折(AFFs)的检测 | computer vision | 骨科疾病 | 卷积神经网络(CNNs) | ResNet-50 | image | 训练数据包括213例完整AFF、49例不完整AFF、394例典型股骨骨折和1359例非骨折股骨X光片;外部验证数据包括733例典型股骨骨折和290例AFF图像 |
19339 | 2024-08-16 |
Modelling future bone mineral density: Simplicity or complexity?
2024-Oct, Bone
IF:3.5Q2
DOI:10.1016/j.bone.2024.117178
PMID:38972532
|
研究论文 | 本文比较了两种方法(简单统计方法和深度学习方法)在预测未来骨密度方面的效果 | 开发了一种基于深度学习的复杂方法来处理多维纵向数据,并结合了从患者历史DXA扫描中提取的变量和ZBM方法的特征 | 深度学习模型在男性中的表现不如简单统计模型 | 探索预测未来骨密度的有效方法,以辅助临床决策 | 使用纵向DXA数据的白人成年患者 | NA | 骨质疏松症 | DXA扫描 | 深度学习模型 | 纵向数据 | 2948名40-90岁的白人成年人,其中2652名女性和296名男性 |
19340 | 2024-08-16 |
Gender Differences in Letters of Recommendations and Personal Statements for Neurotology Fellowship over 10 Years: A Deep Learning Linguistic Analysis
2024-Sep-01, Otology & neurotology : official publication of the American Otological Society, American Neurotology Society [and] European Academy of Otology and Neurotology
IF:1.9Q2
DOI:10.1097/MAO.0000000000004265
PMID:39052892
|
研究论文 | 本研究通过深度学习语言分析方法,评估了神经耳科学奖学金申请中个人陈述和推荐信在性别间的语言差异。 | 使用Valence Aware Dictionary and Sentiment Reasoner (VADER)自然语言处理包和Empath深度学习工具,对推荐信和个人陈述中的情感进行分类和比较。 | 研究仅限于两个机构的数据,可能无法代表所有神经耳科学奖学金申请的情况。 | 评估神经耳科学奖学金申请过程中个人陈述和推荐信在性别间的语言差异。 | 神经耳科学奖学金申请者的个人陈述和推荐信。 | 自然语言处理 | NA | 自然语言处理(NLP) | 深度学习工具Empath | 文本 | 177名申请者,其中120名男性,57名女性 |