深度学习在生物医药领域中的应用

本数据库通过收集和整理最新科研文献信息而得,供了解领域前沿进展之用。数据源自 PubMed Data ,每日自动更新,已收录文献数量参见 统计表格。表格内容由 GPT 自动整理,可能存在错误或遗漏,请使用时务必注意核实!

如有建议或合作意向,欢迎联系 linlin.yan(AT)bioinfo.app 或 微信 yanlinlin82。本项目遵循 MIT 许可 发布,欢迎下载 源码 自行修改使用。如觉得不错,还请不吝 给我打赏,你的支持是我继续创新的重要动力!

Sample Image
添加微信请说明来意
Sample Image
微信赞赏

除通过在线浏览外,为方便用户离线查阅,本站也提供 付费下载(定价10元)。之所以考虑收费,是因为批量扫描这些文献并整理也是有一定成本的,还请理解并多多支持。本站数据会持续更新,而仅需一次付费,未来就可以随时重新下载到最新版本数据。

当前筛选条件: [分区不过滤] [IF不过滤] [发表日期不过滤] [清除筛选条件]
当前共找到 25032 篇文献,本页显示第 19401 - 19420 篇。
序号 推送日期 文章 类型 简述 创新点 不足 研究目的 研究对象 领域 病种 技术 模型 数据类型 样本量
19401 2024-08-27
Detecting Adverse Pathology of Prostate Cancer With a Deep Learning Approach Based on a 3D Swin-Transformer Model and Biparametric MRI: A Multicenter Retrospective Study
2024-06, Journal of magnetic resonance imaging : JMRI IF:3.3Q1
研究论文 本研究开发了一种基于3D Swin-Transformer模型和双参数MRI的深度学习方法,用于检测前列腺癌患者的不良病理情况,并进行多中心回顾性研究 使用3D Swin-Transformer网络(TransNet)和结合临床特征的集成模型(TransCL)来提高检测不良病理情况的准确性 研究为回顾性且涉及多中心数据,可能存在数据偏差 开发和比较深度学习模型与临床模型及放射科医生解读在检测前列腺癌不良病理情况中的性能 616名接受根治性前列腺切除术的患者 机器学习 前列腺癌 双参数MRI Swin-Transformer 影像 616名患者,分为训练组508人和外部验证组108人
19402 2024-08-27
Automatic Detection of Perilunate and Lunate Dislocations on Wrist Radiographs Using Deep Learning
2024-Jun-01, Plastic and reconstructive surgery IF:3.2Q1
研究论文 本研究使用深度学习算法自动检测手腕侧位X光片中的月骨周围和月骨脱位 开发了一种新颖的深度学习算法,用于诊断手腕侧位X光片中的月骨周围和月骨脱位,有望提高临床敏感性,最终防止这些损伤的延迟或漏诊 未提及具体限制 利用计算机视觉技术提高月骨周围和月骨脱位的诊断性能 手腕侧位X光片中的月骨周围和月骨脱位 计算机视觉 NA 深度学习 神经网络 图像 435张手腕侧位X光片
19403 2024-08-27
Deep Learning-Based T2-Weighted MR Image Quality Assessment and Its Impact on Prostate Cancer Detection Rates
2024-06, Journal of magnetic resonance imaging : JMRI IF:3.3Q1
研究论文 本研究评估了基于深度学习的T2加权磁共振图像质量对前列腺癌检测率的影响 使用先前开发的内部人工智能算法对T2加权图像进行质量分类,并分析其对前列腺癌检测率的影响 研究为回顾性,且仅限于特定PI-RADS类别的病变 探讨图像质量对前列腺癌检测的影响 615名连续患者的前列腺MRI图像 数字病理学 前列腺癌 T2加权涡轮自旋回波MRI 人工智能算法 图像 615名患者
19404 2024-08-27
Assessing the Accuracy and Reproducibility of PARIETAL: A Deep Learning Brain Extraction Algorithm
2024-06, Journal of magnetic resonance imaging : JMRI IF:3.3Q1
研究论文 评估PARIETAL这一深度学习脑提取算法的准确性和可重复性 PARIETAL算法能够在不同磁共振成像设备和协议下保持高性能,无需重新训练或微调 NA 展示并评估PARIETAL这一预训练的深度学习脑提取方法的临床使用效果 PARIETAL算法的可重复性和在不同制造商扫描仪间的鲁棒性 机器学习 NA 磁共振成像(MRI) 深度学习 图像 21名受试者(12名女性),年龄范围22-48岁,使用三种不同的MRI扫描仪
19405 2024-08-07
Editorial for "3D Breast Cancer Segmentation in DCE-MRI Using Deep Learning With Weak Annotation"
2024-06, Journal of magnetic resonance imaging : JMRI IF:3.3Q1
NA NA NA NA NA NA NA NA NA NA NA NA
19406 2024-08-27
3D Breast Cancer Segmentation in DCE-MRI Using Deep Learning With Weak Annotation
2024-06, Journal of magnetic resonance imaging : JMRI IF:3.3Q1
研究论文 本文开发了一种使用弱注释的深度学习模型,用于在动态对比增强磁共振成像(DCE-MRI)中进行三维乳腺癌分割 使用弱注释方法节省时间和精力,并开发了基于3D U-Net transformer(UNETR)的深度学习模型 NA 开发一种可靠的深度学习模型,用于在DCE-MRI中进行三维乳腺癌分割 736名乳腺癌女性患者的数据 数字病理学 乳腺癌 DCE-MRI 3D U-Net transformer (UNETR) 图像 736名乳腺癌女性患者,分为开发集(544名)和测试集(192名)
19407 2024-08-07
Editorial for "Detecting Adverse Pathology of Prostate Cancer With a Deep Learning Approach Based on a 3D Swin-Transformer Model and Biparametric MRI: A Multicenter Retrospective Study"
2024-06, Journal of magnetic resonance imaging : JMRI IF:3.3Q1
NA NA NA NA NA NA NA NA NA NA NA NA
19408 2024-08-07
Editorial for "Deep Learning-Based T2-Weighted MR Image Quality Assessment and Its Impact on Prostate Cancer Detection Rates"
2024-06, Journal of magnetic resonance imaging : JMRI IF:3.3Q1
NA NA NA NA NA NA NA NA NA NA NA NA
19409 2024-08-07
Editorial for "Assessment of Lymphovascular Invasion in Breast Cancer Using a Combined MRI Morphological Features, Radiomics, and Deep Learning Approach Based on Dynamic Contrast-Enhanced MRI"
2024-06, Journal of magnetic resonance imaging : JMRI IF:3.3Q1
NA NA NA NA NA NA NA NA NA NA NA NA
19410 2024-08-27
Assessment of Lymphovascular Invasion in Breast Cancer Using a Combined MRI Morphological Features, Radiomics, and Deep Learning Approach Based on Dynamic Contrast-Enhanced MRI
2024-06, Journal of magnetic resonance imaging : JMRI IF:3.3Q1
研究论文 本研究开发了一种结合MRI形态学特征、放射组学和深度学习方法的模型,用于评估乳腺癌中的淋巴血管侵犯(LVI)状态。 本研究通过结合MRI形态学特征、放射组学和深度学习方法,开发了一种新的联合诊断模型,显著提高了LVI状态评估的准确性。 本研究为回顾性横断面队列研究,未来需要在前瞻性研究中验证模型的有效性。 开发一种有效的模型,用于通过MRI形态学特征、放射组学和深度学习方法评估乳腺癌患者的LVI状态。 乳腺癌患者的淋巴血管侵犯(LVI)状态。 数字病理学 乳腺癌 动态对比增强MRI(DCE-MRI) 深度学习(DL) 图像 206名乳腺癌患者,其中训练集136名,测试集70名。
19411 2024-08-27
Deep Learning Assessment of Small Renal Masses at Contrast-enhanced Multiphase CT
2024-05, Radiology IF:12.1Q1
研究论文 本文开发并验证了一种深度学习算法,用于在增强多相CT中识别良性小肾肿块 该研究首次开发并验证了一种基于多相CT的深度学习算法,用于识别良性小肾肿块,包括1厘米或更小的病变 NA 开发并验证一种深度学习算法,用于在增强多相CT中识别良性小肾肿块 小肾肿块的准确表征 计算机视觉 泌尿系统疾病 深度学习 深度学习算法 影像 共评估了1703名患者,包括1063个病变(训练集874个,内部测试集189个),多中心外部测试集537个病变,前瞻性测试集103个病变
19412 2024-08-27
Editorial for "Preoperative Discrimination of CDKN2A/B Homozygous Deletion Status in Isocitrate Dehydrogenase-Mutant Astrocytoma: A Deep Learning-Based Radiomics Model Using MRI"
2024-05, Journal of magnetic resonance imaging : JMRI IF:3.3Q1
NA NA NA NA NA NA NA NA NA NA NA NA
19413 2024-08-27
Multitask Deep Learning-Based Whole-Process System for Automatic Diagnosis of Breast Lesions and Axillary Lymph Node Metastasis Discrimination from Dynamic Contrast-Enhanced-MRI: A Multicenter Study
2024-05, Journal of magnetic resonance imaging : JMRI IF:3.3Q1
研究论文 本研究开发了一个基于深度学习的全过程系统(DLWPS),用于从动态对比增强磁共振成像(DCE-MRI)中自动诊断乳腺病变和区分腋窝淋巴结(ALN)转移 DLWPS结合了注意力模块和边缘特征提取模块,提高了乳腺病变和ALN转移诊断的准确性,并改善了放射科医生的诊断一致性 NA 开发一个深度学习系统,用于自动诊断乳腺病变和区分腋窝淋巴结转移 乳腺病变和腋窝淋巴结转移的诊断 机器学习 乳腺癌 动态对比增强磁共振成像(DCE-MRI) U-Net框架 图像 1760名乳腺患者,分为训练和验证集(1110名患者),内部测试集(476名患者)和外部测试集(174名患者)
19414 2024-08-27
Synthesized 7T MPRAGE From 3T MPRAGE Using Generative Adversarial Network and Validation in Clinical Brain Imaging: A Feasibility Study
2024-05, Journal of magnetic resonance imaging : JMRI IF:3.3Q1
研究论文 本研究使用生成对抗网络(GAN)从3T MRI图像生成合成7T MRI图像,并在临床脑部成像中验证其可行性 本研究首次使用生成对抗网络从3T MRI图像生成合成7T MRI图像,并评估了其在脑部成像中的应用 本研究仅在非增强和增强的3T和7T MRI图像上进行了验证,未来需要进一步的研究以验证其在其他类型图像上的效果 研究目的是生成合成7T图像从广泛获取的3T图像,并评估这种方法在脑部成像中的可行性 研究对象包括33名健康志愿者和89名脑部疾病患者 计算机视觉 NA 生成对抗网络(GAN) 生成对抗网络(GAN) 图像 122对3T和7T MRI扫描
19415 2024-08-27
Preoperative Discrimination of CDKN2A/B Homozygous Deletion Status in Isocitrate Dehydrogenase-Mutant Astrocytoma: A Deep Learning-Based Radiomics Model Using MRI
2024-05, Journal of magnetic resonance imaging : JMRI IF:3.3Q1
研究论文 本研究开发了一种基于磁共振成像(MRI)特征的深度学习放射组学模型,用于术前鉴别IDH突变型星形细胞瘤中CDKN2A/B纯合子缺失状态 本研究创新性地结合了放射组学特征和深度学习特征,开发了一种综合模型,该模型在评估CDKN2A/B纯合子缺失状态方面表现优于单一的放射组学或深度学习模型 本研究为回顾性研究,未来需要进行前瞻性研究以验证模型的有效性 开发一种非侵入性、稳健的术前模型,用于鉴别IDH突变型星形细胞瘤中CDKN2A/B纯合子缺失状态 IDH突变型星形细胞瘤患者中的CDKN2A/B纯合子缺失状态 计算机视觉 神经系统肿瘤 MRI 深度学习模型 图像 251名患者,其中107名患者存在CDKN2A/B纯合子缺失,144名患者不存在CDKN2A/B纯合子缺失
19416 2024-08-27
Gra-CRC-miRTar: The pre-trained nucleotide-to-graph neural networks to identify potential miRNA targets in colorectal cancer
2024-Apr-20, bioRxiv : the preprint server for biology
研究论文 本文提出了一种预训练的核苷酸到图神经网络框架Gra-CRC-miRTar,用于识别结直肠癌中的潜在miRNA靶点 构建了两个预训练模型来编码RNA序列并将其转换为de Bruijn图,使用不同的图神经网络学习潜在表示,并通过多层感知器进行预测任务 NA 提高结直肠癌治疗干预的基础 结直肠癌中的miRNA靶点 机器学习 结直肠癌 图神经网络 多层感知器(MLP) RNA序列 201个实验验证的miRNA-mRNA对
19417 2024-08-27
Left Ventricular Trabeculations at Cardiac MRI: Reference Ranges and Association with Cardiovascular Risk Factors in UK Biobank
2024-04, Radiology IF:12.1Q1
研究论文 本研究利用深度学习算法对英国生物库的心脏MRI扫描进行自动分割,评估个体特征和心血管风险因素与左心室(LV)乳头肌质量(LVM)的关系,并建立健康参与者的正常参考范围 首次应用自动分割技术评估左心室乳头肌质量与心血管风险因素的关系,并建立了健康人群的年龄和性别特异性参考范围 研究仅包括白人成年参与者,可能限制了结果的普遍性 评估个体特征和心血管风险因素与左心室乳头肌质量的关系,并建立正常参考范围 左心室乳头肌质量及其与心血管风险因素的关系 数字病理学 心血管疾病 深度学习算法 NA 图像 共43,038名参与者,其中28,672人属于暴露组,7384人属于参考组
19418 2024-08-27
Predicting Invasiveness of Lung Adenocarcinoma at Chest CT with Deep Learning Ternary Classification Models
2024-04, Radiology IF:12.1Q1
研究论文 本文研究了使用深度学习三元分类模型在胸部CT上预测肺腺癌侵袭性的方法 提出了一种结合裁决方法的策略,通过框架优化、联合学习和裁决策略,提高了深度学习模型在分类肺腺癌侵袭性方面的性能 研究为回顾性研究,且仅在特定数据集上进行了验证 旨在确定包含裁决方法的策略是否能增强深度学习三元分类模型在预测肺腺癌侵袭性方面的性能,并保持对纯磨玻璃结节(pGGNs)的分类性能 肺腺癌的侵袭性分类 机器学习 肺腺癌 深度学习 三元分类模型 CT影像 共4929个结节来自4483名患者,外部测试集包含361个pGGNs来自281名患者
19419 2024-08-27
Clinical Utility of a CT-based AI Prognostic Model for Segmentectomy in Non-Small Cell Lung Cancer
2024-04, Radiology IF:12.1Q1
研究论文 开发并验证了一种基于深度学习的预测模型,使用术前CT扫描和临床影像信息对接受肺段切除术的IA期非小细胞肺癌患者进行风险分层 该模型在自由复发和肺癌特异性生存方面表现出比日本临床肿瘤学组标准更高的敏感性 这是一项单中心回顾性研究,需要进一步的多中心研究来验证模型的有效性 开发和验证一种基于CT的深度学习预测模型,用于对接受肺段切除术的IA期非小细胞肺癌患者进行风险分层 接受肺段切除术的IA期非小细胞肺癌患者 机器学习 肺癌 深度学习 DL模型 影像数据 预训练集包括1756名患者,内部集包括730名患者,肺段切除术测试集包括222名患者
19420 2024-08-27
US-based Sequential Algorithm Integrating an AI Model for Advanced Liver Fibrosis Screening
2024-04, Radiology IF:12.1Q1
研究论文 本研究构建了包含超声深度学习模型的序贯临床算法,并比较其与其它非侵入性测试预测晚期肝纤维化的能力 提出了一种结合FIB-4指数和超声深度学习模型的序贯算法,提高了诊断准确性和转诊管理 NA 构建序贯临床算法以提高晚期肝纤维化的筛查准确性 慢性肝病患者及肝功能异常但原因不明的成人患者 机器学习 肝病 超声深度学习 深度学习网络(FIB-Net) 图像 训练集3067例,验证集1599例,测试集1228例
回到顶部