本数据库通过收集和整理最新科研文献信息而得,供了解领域前沿进展之用。数据源自 PubMed Data ,每日自动更新,已收录文献数量参见 统计表格。表格内容由 GPT 自动整理,可能存在错误或遗漏,请使用时务必注意核实!
如有建议或合作意向,欢迎联系 linlin.yan(AT)bioinfo.app 或 微信 yanlinlin82。本项目遵循 MIT 许可 发布,欢迎下载 源码 自行修改使用。如觉得不错,还请不吝 给我打赏,你的支持是我继续创新的重要动力!
除通过在线浏览外,为方便用户离线查阅,本站也提供 付费下载(定价10元)。之所以考虑收费,是因为批量扫描这些文献并整理也是有一定成本的,还请理解并多多支持。本站数据会持续更新,而仅需一次付费,未来就可以随时重新下载到最新版本数据。
序号 | 推送日期 | 文章 | 类型 | 简述 | 创新点 | 不足 | 研究目的 | 研究对象 | 领域 | 病种 | 技术 | 模型 | 数据类型 | 样本量 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
19421 | 2024-09-13 |
Achieving Occam's razor: Deep learning for optimal model reduction
2024-Jul, PLoS computational biology
IF:3.8Q1
DOI:10.1371/journal.pcbi.1012283
PMID:39024398
|
研究论文 | 本文展示了如何利用深度学习来实现奥卡姆剃刀原则,通过FixFit方法减少模型参数,提高模型的简洁性和准确性 | 提出了FixFit方法,利用深度神经网络的瓶颈层来量化模型复杂度,并提供了一种无偏的方式来区分有价值和无价值的实验假设 | NA | 探索如何利用深度学习实现奥卡姆剃刀原则,减少模型参数,提高模型的简洁性和准确性 | 模型参数的简化与优化 | 机器学习 | NA | 深度学习 | 前馈深度神经网络 | 数值数据 | NA |
19422 | 2024-09-13 |
Safety and efficiency of a fully automatic workflow for auto-segmentation in radiotherapy using three commercially available deep learning-based applications
2024-Jul, Physics and imaging in radiation oncology
DOI:10.1016/j.phro.2024.100627
PMID:39253729
|
研究论文 | 本文开发并评估了一种用于放射治疗自动分割的全自动工作流程的安全性和效率 | 本文引入了标准化全自动工作流程,显著减少了失败模式并提高了工作流程的安全性和效率 | NA | 评估全自动工作流程在放射治疗自动分割中的安全性和效率 | 三种商业化的基于深度学习的自动分割应用程序 | 计算机视觉 | NA | 深度学习 | NA | NA | NA |
19423 | 2024-09-13 |
A deep learning-based approach for unbiased kinematic analysis in CNS injury
2024-Apr-12, bioRxiv : the preprint server for biology
DOI:10.1101/2024.04.08.588606
PMID:38645091
|
研究论文 | 本文介绍了一种基于深度学习的方法,用于脊髓损伤后无偏差的运动学分析 | 开发了两种基于深度学习算法的无标记运动学分析范式,MotorBox和MotoRater,用于替代传统的BMS测试,消除了评估中的主观偏差和变异性 | NA | 提高脊髓损伤后功能评估的准确性、敏感性和可重复性 | 脊髓损伤后的运动功能评估 | 机器学习 | 脊髓损伤 | 深度学习 | NA | 视频 | NA |
19424 | 2024-09-13 |
Automated cutaneous squamous cell carcinoma grading using deep learning with transfer learning
2024 Apr-Jun, Romanian journal of morphology and embryology = Revue roumaine de morphologie et embryologie
DOI:10.47162/RJME.65.2.10
PMID:39020538
|
研究论文 | 本研究开发并验证了一种基于深度学习的模型,用于自动化皮肤鳞状细胞癌的病理分级 | 利用迁移学习训练三种不同架构的深度神经网络,提高了诊断准确性和效率 | NA | 开发和验证一种基于深度学习的模型,用于自动化皮肤鳞状细胞癌的病理分级 | 皮肤鳞状细胞癌的病理分级 | 计算机视觉 | 皮肤癌 | 深度学习 | 深度神经网络(DNN) | 图像 | 300张皮肤鳞状细胞癌的病理图像,60张用于临床验证 |
19425 | 2024-09-13 |
Machine learning and single-cell transcriptome profiling reveal regulation of fibroblast activation through THBS2/TGFβ1/P-Smad2/3 signalling pathway in hypertrophic scar
2024-Mar, International wound journal
IF:2.6Q1
DOI:10.1111/iwj.14481
PMID:37986676
|
研究论文 | 本研究通过单细胞转录组测序和机器学习方法,揭示了肥厚性瘢痕中纤维母细胞激活的调控机制 | 首次通过单细胞转录组测序和多种机器学习算法,识别出与肥厚性瘢痕相关的关键基因模块,并建立了基于卷积神经网络的诊断和预测模型 | 研究样本量较小,可能影响结果的普适性 | 揭示肥厚性瘢痕形成机制,并提供诊断和治疗的新生物标志物 | 肥厚性瘢痕中的纤维母细胞及其相关基因 | 数字病理学 | 皮肤疾病 | 单细胞RNA测序 | 卷积神经网络 | 基因表达数据 | 正常皮肤和肥厚性瘢痕样本 |
19426 | 2024-09-13 |
A deep learning approach to remove contrast from contrast-enhanced CT for proton dose calculation
2024-Feb, Journal of applied clinical medical physics
IF:2.0Q3
DOI:10.1002/acm2.14266
PMID:38269961
|
研究论文 | 本文提出了一种深度学习方法,用于从增强CT图像中生成非增强CT图像,以减少质子剂量计算中的不确定性 | 开发了一种深度网络,能够直接从增强CT图像生成非增强CT图像,避免了额外的非增强CT扫描,减少了成像时间和辐射剂量,并降低了组织运动引起的不确定性 | 研究仅在20名患者的腹部CT图像上进行了验证,结果显示在质子束路径的远端存在显著的剂量差异 | 开发一种方法,用于从增强CT图像生成非增强CT图像,以减少质子剂量计算中的不确定性 | 增强CT和非增强CT图像,以及质子剂量计算 | 计算机视觉 | NA | 深度学习 | 深度网络 | 图像 | 20名患者的腹部增强CT和非增强CT图像对,以及8000个图像块对 |
19427 | 2024-09-13 |
Reference-Based Multi-Stage Progressive Restoration for Multi-Degraded Images
2024, IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
IF:10.8Q1
DOI:10.1109/TIP.2024.3451939
PMID:39236125
|
研究论文 | 本文提出了一种基于参考图像的多阶段渐进式图像恢复方法,用于处理多重退化的图像 | 本文创新性地提出了Reference-based Image Restoration Transformer (Ref-IRT)模型,通过三个主要阶段逐步恢复图像细节,并引入了质量退化恢复方法和纹理转移/重建网络来增强恢复效果 | NA | 研究如何通过深度学习技术有效恢复多重退化图像的高质量细节 | 多重退化的图像 | 计算机视觉 | NA | 深度学习 | Transformer | 图像 | 在三个基准数据集上进行了实验 |
19428 | 2024-09-13 |
Smartphone region-wise image indoor localization using deep learning for indoor tourist attraction
2024, PloS one
IF:2.9Q1
DOI:10.1371/journal.pone.0307569
PMID:39250439
|
研究论文 | 本文提出了一种利用深度学习技术通过智能手机图像进行室内旅游景点区域定位的方法 | 该方法无需基础设施投资,降低了将博物馆和海洋馆转变为智能场所的成本和时间 | 研究仅在巴西的一个实际场景中进行了评估,可能需要进一步验证其在其他地区的效果 | 开发一种适用于室内旅游景点的智能手机图像区域定位技术 | 智能手机拍摄的图像和室内旅游景点的位置分类 | 计算机视觉 | NA | 深度学习 | 神经网络(包括基于Transformer的模型) | 图像 | 3654张图像,来自10种不同智能手机 |
19429 | 2024-09-13 |
Innovation in public health surveillance for social distancing during the COVID-19 pandemic: A deep learning and object detection based novel approach
2024, PloS one
IF:2.9Q1
DOI:10.1371/journal.pone.0308460
PMID:39250511
|
研究论文 | 本文提出了一种基于深度学习和目标检测的公共健康监测新方法,用于在COVID-19疫情期间监控社交距离 | 采用YOLOv4模型和无人机实时视频数据,实现了高效的社交距离监控,准确率达到82% | NA | 开发一种创新的公共健康监测方法,以应对COVID-19疫情期间的社交距离问题 | 社交距离的监控和违规行为的检测 | 计算机视觉 | COVID-19 | 目标检测 | YOLOv4 | 视频 | 使用无人机实时流式传输的25fps、1920 X 1080分辨率视频数据,监控范围为35米 |
19430 | 2024-09-13 |
Deep learning for detecting prenatal alcohol exposure in pediatric brain MRI: a transfer learning approach with explainability insights
2024, Frontiers in computational neuroscience
IF:2.1Q3
DOI:10.3389/fncom.2024.1434421
PMID:39252695
|
研究论文 | 本文利用深度学习技术,通过迁移学习方法检测儿童脑部MRI中的产前酒精暴露(PAE),并进行了可解释性分析 | 本文首次将深度学习应用于检测儿童脑部MRI中的产前酒精暴露,并采用迁移学习方法和可解释性分析来提高模型的性能和透明度 | 由于儿童脑部快速发育、运动伪影和数据不足等问题,构建适用于儿童群体的深度学习模型存在挑战 | 研究如何利用深度学习和迁移学习方法检测儿童脑部MRI中的产前酒精暴露,并进行可解释性分析 | 2至8岁儿童的T1加权结构脑部MRI扫描数据 | 计算机视觉 | NA | 深度学习 | 简单全卷积网络(SFCN) | 图像 | 涉及2至8岁儿童的脑部MRI扫描数据,具体样本数量未明确提及 |
19431 | 2024-09-13 |
High-Throughput Phenotyping of Soybean Biomass: Conventional Trait Estimation and Novel Latent Feature Extraction Using UAV Remote Sensing and Deep Learning Models
2024, Plant phenomics (Washington, D.C.)
DOI:10.34133/plantphenomics.0244
PMID:39252878
|
研究论文 | 本研究利用无人机遥感和深度学习模型对大豆生物量相关性状进行高通量表型分析 | 首次结合无人机遥感和深度学习模型进行大豆生物量相关性状的高通量表型分析,并提取潜在特征用于基因组预测 | 研究仅在2018年进行了一次田间试验,样本量有限,且仅在干旱和对照两种灌溉条件下进行 | 开发模型以利用无人机遥感和深度学习模型估计大豆生物量相关性状的表型值 | 大豆生物量相关性状,包括干重、主茎长度、节点和分支数量以及植株高度 | 计算机视觉 | NA | 无人机遥感 | 卷积神经网络(CNN) | 图像 | 198个已知全基因组序列的大豆种质 |
19432 | 2024-09-13 |
Choroidal Optical Coherence Tomography Angiography: Noninvasive Choroidal Vessel Analysis via Deep Learning
2024, Health data science
DOI:10.34133/hds.0170
PMID:39257642
|
研究论文 | 本文提出了一种基于深度学习的非侵入性脉络膜血管分析方法,通过光学相干断层扫描血管造影(OCTA)技术,实现对脉络膜亚层的血管分布评估 | 本文提出了一种新的脉络膜血管造影策略,并采用了一种集成判别均值教师结构来处理跨域分割任务中的特定问题 | 本文的实验结果主要基于特定的疾病样本,未来需要进一步验证其在更广泛疾病类型中的适用性 | 开发一种非侵入性的方法来评估脉络膜亚层的血管分布,支持脉络膜疾病的临床分析 | 脉络膜亚层的血管分布 | 计算机视觉 | NA | 光学相干断层扫描血管造影(OCTA) | 集成判别均值教师结构 | 图像 | NA |
19433 | 2024-09-13 |
medigan: a Python library of pretrained generative models for medical image synthesis
2023-Nov, Journal of medical imaging (Bellingham, Wash.)
DOI:10.1117/1.JMI.10.6.061403
PMID:36814939
|
研究论文 | 本文介绍了一个名为medigan的Python库,该库提供了预训练的生成模型,用于医学图像合成 | medigan库通过提供预训练的生成模型,降低了生成模型在研究和临床应用中的使用门槛,促进了合成数据的共享和利用 | NA | 探索生成模型共享,以降低生成模型在研究和临床应用中的使用门槛 | 生成模型在医学图像合成中的应用 | 计算机视觉 | NA | 生成对抗网络(GAN) | 生成对抗网络(GAN) | 图像 | 21个模型,9种不同的GAN架构,11个不同的数据集 |
19434 | 2024-09-13 |
Unbiased curriculum learning enhanced global-local graph neural network for protein thermodynamic stability prediction
2023-10-03, Bioinformatics (Oxford, England)
DOI:10.1093/bioinformatics/btad589
PMID:37740312
|
研究论文 | 本文提出了一种基于无偏课程学习增强的全局-局部图神经网络,用于蛋白质热力学稳定性预测 | 本文创新性地结合了全局-局部图神经网络和无偏课程学习方法,以解决现有方法在蛋白质结构自然拓扑和噪声样本处理上的不足 | NA | 提高蛋白质热力学稳定性预测的准确性 | 蛋白质及其点突变后的热力学稳定性 | 机器学习 | NA | 图神经网络 | 全局-局部图神经网络 | 蛋白质结构数据 | NA |
19435 | 2024-09-13 |
Proteogenomic insights suggest druggable pathways in endometrial carcinoma
2023-09-11, Cancer cell
IF:48.8Q1
DOI:10.1016/j.ccell.2023.07.007
PMID:37567170
|
研究论文 | 研究通过多组学平台分析了138个子宫内膜癌肿瘤和20个正常组织样本,揭示了潜在的可药物化通路和分子影像标志物 | 研究首次通过多组学平台全面分析子宫内膜癌,发现了新的生物标志物和潜在的治疗靶点 | 研究样本量有限,需要进一步验证结果在更大规模研究中的适用性 | 揭示子宫内膜癌中的可药物化通路和分子影像标志物,以指导患者分层和精准治疗 | 子宫内膜癌肿瘤和正常组织样本 | 数字病理学 | 子宫内膜癌 | 多组学平台 | 深度学习 | 图像 | 138个肿瘤样本和20个正常组织样本 |
19436 | 2024-09-13 |
Data for assessing red blood cell deformability from microscopy images using deep learning
2023-Apr, Data in brief
IF:1.0Q3
DOI:10.1016/j.dib.2023.108928
PMID:36798597
|
研究论文 | 本文提供了一个用于评估红细胞变形性的显微镜图像数据集,并探讨了利用深度学习算法从图像中测量红细胞变形性的潜力 | 本文首次提供了一个包含10名健康供体红细胞样本的显微镜图像数据集,用于开发深度学习算法以评估红细胞变形性 | 数据集仅包含10名健康供体的样本,可能不足以涵盖所有可能的红细胞变形性变化情况 | 开发一种从显微镜图像中测量红细胞变形性的深度学习算法,以简化红细胞质量评估过程 | 红细胞的变形性 | 计算机视觉 | NA | 显微镜成像 | 深度学习 | 图像 | 10名健康供体的红细胞样本 |
19437 | 2024-09-13 |
Deep learning imaging features derived from kidney ultrasounds predict chronic kidney disease progression in children with posterior urethral valves
2023-03, Pediatric nephrology (Berlin, Germany)
DOI:10.1007/s00467-022-05677-0
PMID:35867160
|
研究论文 | 本文利用深度学习从新生儿肾脏超声图像中提取解剖特征,评估其在预测后尿道瓣膜症患儿慢性肾病进展风险和时间方面的表现 | 本文首次使用深度学习技术从新生儿肾脏超声图像中提取特征,并将其应用于预测慢性肾病的进展,相比仅使用临床特征如最低肌酐水平,具有更高的预测准确性 | 本文为回顾性研究,样本量有限,且仅针对后尿道瓣膜症患儿,研究结果的普适性有待进一步验证 | 研究目的是利用深度学习技术从新生儿肾脏超声图像中提取特征,以提高对后尿道瓣膜症患儿慢性肾病进展的早期预测准确性 | 研究对象为患有后尿道瓣膜症的男孩 | 计算机视觉 | 泌尿系统疾病 | 深度学习 | 随机生存森林 | 图像 | 225名患者 |
19438 | 2024-09-13 |
SAM-X: sorting algorithm for musculoskeletal x-ray radiography
2023-Mar, European radiology
IF:4.7Q1
DOI:10.1007/s00330-022-09184-6
PMID:36307553
|
研究论文 | 开发了一种两阶段的深度学习排序算法,用于根据解剖实体对大型肌肉骨骼X光图像数据集进行排序 | 提出了一个两阶段的深度学习排序算法,结合自监督学习和人类专家的弱语义标签,显著提高了分类准确性 | 研究主要集中在肌肉骨骼肿瘤中心的X光图像,可能限制了算法的普适性 | 开发一种高效的深度学习算法,用于根据解剖实体对X光图像进行分类,以支持肌肉骨骼疾病的评估 | 42,608张未结构化和匿名的X光图像 | 计算机视觉 | NA | 深度学习 | 自监督模型 | 图像 | 42,608张X光图像 |
19439 | 2024-09-13 |
PulDi-COVID: Chronic obstructive pulmonary (lung) diseases with COVID-19 classification using ensemble deep convolutional neural network from chest X-ray images to minimize severity and mortality rates
2023-Mar, Biomedical signal processing and control
IF:4.9Q1
DOI:10.1016/j.bspc.2022.104445
PMID:36466567
|
研究论文 | 本文提出了一种名为PulDi-COVID的深度卷积神经网络模型,用于从胸部X光图像中分类慢性阻塞性肺病和COVID-19,以减少严重程度和死亡率 | 本文创新性地提出了PulDi-COVID模型,结合了多种深度学习模型的快照,通过集成学习方法提高了分类准确性 | 由于数据噪声和小样本问题,现有深度学习策略可能存在显著偏差和泛化失败 | 研究目的是开发一种高效的深度学习模型,用于快速检测COVID-19和慢性肺病,以降低患者的严重程度和死亡率 | 研究对象包括慢性阻塞性肺病和COVID-19患者,以及胸部X光图像 | 计算机视觉 | 肺病 | 深度学习 | 卷积神经网络 | 图像 | 使用了较大的COVID-19和肺病胸部X光图像数据集 |
19440 | 2024-09-13 |
Fast three-dimensional image generation for healthy brain aging using diffeomorphic registration
2023-03, Human brain mapping
IF:3.5Q1
DOI:10.1002/hbm.26165
PMID:36468536
|
研究论文 | 本文提出了一种基于微分同胚配准的方法,用于生成健康大脑随时间变化的3D图像,以填补纵向数据集中的缺失数据 | 引入了两个新的模块在Synthmorph框架内模拟老化过程,并使用图像配准技术生成 anatomically plausible 的图像 | 假设健康大脑的线性衰退可能不适用于所有情况 | 开发一种方法来填补纵向数据集中的缺失数据,以帮助早期检测和预测神经退行性疾病 | 健康大脑的老化过程 | 计算机视觉 | NA | 微分同胚配准 | Synthmorph | 图像 | 2662个T1加权MRI扫描,来自796名健康参与者,来自3个不同的纵向队列 |