深度学习在生物医药领域中的应用

本数据库通过收集和整理最新科研文献信息而得,供了解领域前沿进展之用。数据源自 PubMed Data ,每日自动更新,已收录文献数量参见 统计表格。表格内容由 GPT 自动整理,可能存在错误或遗漏,请使用时务必注意核实!

如有建议或合作意向,欢迎联系 linlin.yan(AT)bioinfo.app 或 微信 yanlinlin82。本项目遵循 MIT 许可 发布,欢迎下载 源码 自行修改使用。如觉得不错,还请不吝 给我打赏,你的支持是我继续创新的重要动力!

Sample Image
添加微信请说明来意
Sample Image
微信赞赏

除通过在线浏览外,为方便用户离线查阅,本站也提供 付费下载(定价10元)。之所以考虑收费,是因为批量扫描这些文献并整理也是有一定成本的,还请理解并多多支持。本站数据会持续更新,而仅需一次付费,未来就可以随时重新下载到最新版本数据。

当前筛选条件: [分区不过滤] [IF不过滤] [发表日期不过滤] [清除筛选条件]
当前共找到 24022 篇文献,本页显示第 19761 - 19780 篇。
序号 推送日期 文章 类型 简述 创新点 不足 研究目的 研究对象 领域 病种 技术 模型 数据类型 样本量
19761 2024-08-07
Genetic Algorithm-Based Receptor Ligand: A Genetic Algorithm-Guided Generative Model to Boost the Novelty and Drug-Likeness of Molecules in a Sampling Chemical Space
2024-02-26, Journal of chemical information and modeling IF:5.6Q1
研究论文 提出了一种基于遗传算法的生成模型GARel,用于设计具有新颖骨架和药物相似性的分子 GARel模型通过遗传算法引导,能够生成具有更多样化和新颖骨架的分子,并具有更好的物理化学性质和有利的对接分数 NA 开发一种能够平衡新颖性和药物相似性的深度学习生成模型,以推动药物发现领域的发展 设计针对AA2AR、EGFR和SARS-Cov2的抑制剂分子 机器学习 NA 遗传算法 深度学习生成模型 分子结构 针对三个目标(AA2AR、EGFR和SARS-Cov2)设计抑制剂分子
19762 2024-08-07
Data modeling analysis of GFRP tubular filled concrete column based on small sample deep meta learning method
2024, PloS one IF:2.9Q1
研究论文 本文提出了一种基于小样本深度元学习方法的GFRP管混凝土柱数据建模分析 结合传统回归模型与基于元学习的数据增强优化方法,提出了一种深度神经网络,在优化GFRP包裹混凝土短柱方面表现优异 NA 解决工程数据分析中的小样本回归问题 GFRP管混凝土柱 机器学习 NA 元学习 深度神经网络 工程数据 小样本
19763 2024-08-07
Neighborhood structure-guided brain functional networks estimation for mild cognitive impairment identification
2024, PeerJ IF:2.3Q2
研究论文 本文提出了一种基于邻域结构引导的大脑功能网络估计方法,用于轻度认知障碍的识别 该方法通过考虑感兴趣区域(ROI)之间的空间邻域信息,利用K-最近邻(KNN)算法构建稀疏的大脑功能网络(BFN),克服了传统Pearson相关系数(PC)构建的密集网络与生物学先验的矛盾 NA 旨在提高轻度认知障碍(MCI)与健康个体之间的分类性能 大脑功能网络的构建与轻度认知障碍的识别 计算机视觉 神经退行性疾病 功能磁共振成像(fMRI) K-最近邻(KNN) 图像 具体样本数量未在摘要中提及
19764 2024-08-07
Embedded-deep-learning-based sample-to-answer device for on-site malaria diagnosis
2024, Frontiers in bioengineering and biotechnology IF:4.3Q2
研究论文 本研究提出了一种基于嵌入式深度学习的miLab™设备,用于现场疟疾诊断,该设备采用固体水凝胶染色法,确保血液涂片的一致性和高质量。 miLab™设备通过使用可变形染色贴片,实现了在不同血细胞比容下的一致性血液涂片制备,并利用嵌入式深度学习技术从自动对焦的染色血细胞图像中检测和分类疟原虫。 NA 开发一种在细胞水平上准确且临床表现良好的疟疾诊断方法。 疟疾诊断方法及其在实际应用中的性能。 数字病理学 疟疾 深度学习算法 嵌入式深度学习 图像 临床验证在马拉维进行,总体百分比一致性为92.21%。
19765 2024-08-07
Surrogate modelling of heartbeat events for improved J-peak detection in BCG using deep learning
2024, Frontiers in network physiology
研究论文 本文提出了一种基于深度学习的方法,用于改进BCG信号中的J峰检测,通过模拟离散参考心跳事件来提高检测精度 首次采用核函数编码时间事件,并系统比较了多种事件编码用于事件检测的回归序列到序列模型 NA 提高BCG信号中J峰检测的准确性 BCG信号中的心跳事件检测 机器学习 NA 深度学习 回归序列到序列模型 时间序列 17晚,共134小时的数据,使用嵌入在床垫中的惯性测量单元(IMUs)收集
19766 2024-08-07
Generalising electrocardiogram detection and delineation: training convolutional neural networks with synthetic data augmentation
2024, Frontiers in cardiovascular medicine IF:2.8Q2
研究论文 本文介绍了一种使用合成数据增强训练卷积神经网络的方法,用于心电图检测和 delineation 开发了一种合成数据生成方案,从现有数据库中提取基本段落并概率性地构建未见过的心电图轨迹,同时提出了两种基于分割的损失函数 NA 解决心电图检测和 delineation 中传统方法难以泛化到多样心电图模式的问题 心电图检测和 delineation 机器学习 NA 卷积神经网络 CNN 心电图数据 使用了三个多样化的自由可用数据库(QT, LU, 和 Zhejiang)
19767 2024-08-07
Hybrid healthcare unit recommendation system using computational techniques with lung cancer segmentation
2024, Frontiers in medicine IF:3.1Q1
研究论文 本研究针对医学健康应用中精确分割的关键需求,特别是在使用计算机断层扫描(CT)进行肺结节检测方面,提出了一种混合医疗单元推荐系统,利用计算技术进行肺癌分割。 本研究提出了一种结合U-Net和双参数逻辑分布的学习架构,称为U-Net++,并利用对比度受限自适应直方图均衡化(CLAHE)在5,000组CT扫描图像上进行精确图像分割。 NA 研究目的是提高医学健康应用中肺结节检测的准确性,特别是在CT扫描图像的分割方面。 研究对象为肺结节,特别是其粒子组成,这是诊断和治疗计划的重要方面。 数字病理学 肺癌 深度学习 U-Net++ 图像 5,000组CT扫描图像
19768 2024-08-07
Bibliometric analysis of electroencephalogram research in Parkinson's disease from 2004 to 2023
2024, Frontiers in neuroscience IF:3.2Q2
研究论文 本文通过文献计量分析方法,研究了2004年至2023年间帕金森病中脑电图研究的全球趋势和主要贡献者 应用机器学习、深度学习和任务分析技术为未来脑电图和帕金森病的研究提供了新的方向 NA 分析帕金森病中脑电图研究的全球趋势和主要贡献者 帕金森病中的脑电图研究 神经科学 帕金森病 脑电图(EEG) NA 文献数据 1,559篇相关出版物
19769 2024-08-07
Utilizing deep learning models in an intelligent eye-tracking system for autism spectrum disorder diagnosis
2024, Frontiers in medicine IF:3.1Q1
研究论文 本研究利用深度学习模型开发了一种智能眼动追踪系统,用于自闭症谱系障碍的诊断 本研究采用了先进的图像重采样方法来扩展训练数据集,并开发了基于MobileNet、VGG19、DenseNet169及MobileNet-VGG19混合模型的自动化分类器,这些模型在准确性上超过了现有系统 NA 旨在开发一种快速、高效且精确的自闭症谱系障碍诊断方法 自闭症谱系障碍的早期评估 机器学习 自闭症谱系障碍 深度学习算法 MobileNet, VGG19, DenseNet169, MobileNet-VGG19 眼动追踪数据 547个眼动追踪系统数据,包括328名典型发育儿童和219名自闭症儿童
19770 2024-08-07
Corrigendum: A novel approach for sports injury risk prediction: based on time-series image encoding and deep learning
2024, Frontiers in physiology IF:3.2Q2
correction NA NA NA NA NA NA NA NA NA NA NA
19771 2024-08-07
Automatic renal carcinoma biopsy guidance using forward-viewing endoscopic optical coherence tomography and deep learning
2023-Nov-23, Research square
研究论文 本研究利用前视光学相干断层扫描(OCT)探头和卷积神经网络(CNN)进行自动肾癌活检指导 结合OCT和CNN技术,显著提高了肾癌活检的指导精度 在区分正常组织方面表现不佳 旨在提高肾癌活检的采样准确性 人类肾脏和肾癌样本 计算机视觉 肾癌 光学相干断层扫描(OCT) 卷积神经网络(CNN) 图像 五个人类肾脏和肾癌样本
19772 2024-08-07
A novel approach for sports injury risk prediction: based on time-series image encoding and deep learning
2023, Frontiers in physiology IF:3.2Q2
研究论文 本研究利用时间序列图像编码和深度学习算法构建了一个运动损伤风险预测模型 采用时间序列图像编码和深度卷积自编码器(DCAE)进行特征提取,提高了模型的泛化能力和实用性 未提及具体限制 开发一种有效的运动损伤风险预测工具,以支持未来的运动损伤预防实践 运动损伤风险预测 机器学习 NA 时间序列图像编码,深度卷积自编码器(DCAE) 深度神经网络(DNN) 图像 未提及具体样本数量
19773 2024-08-07
Artificial intelligence assistance significantly improves Gleason grading of prostate biopsies by pathologists
2021-03, Modern pathology : an official journal of the United States and Canadian Academy of Pathology, Inc IF:7.1Q1
研究论文 研究探讨了人工智能辅助对前列腺活检Gleason评分的影响,发现AI辅助显著提高了评分的一致性 首次详细研究了AI系统与病理学家协同工作在前列腺活检Gleason评分中的应用,显示出AI辅助下的病理学家表现优于单独的病理学家和AI系统 研究未涉及AI系统在存在异常情况(如异物组织)时的表现 评估AI辅助对前列腺活检Gleason评分的影响 前列腺活检样本的Gleason评分 数字病理学 前列腺癌 深度学习 AI系统 图像 160个活检样本用于实验,87个样本用于外部验证
19774 2024-08-07
Initial chest radiographs and artificial intelligence (AI) predict clinical outcomes in COVID-19 patients: analysis of 697 Italian patients
2021-Mar, European radiology IF:4.7Q1
研究论文 本研究评估了人工智能系统评估的初始胸部X光片(CXR)严重程度在COVID-19患者中的预后价值 人工智能系统与放射科医生评估的疾病严重程度评分在CXR上独立且可比较,预测COVID-19患者不良结果的能力 NA 评估人工智能系统在COVID-19患者中通过初始胸部X光片预测临床结果的预后价值 COVID-19患者的初始胸部X光片 计算机视觉 COVID-19 深度学习 AI系统 图像 697名患者
19775 2024-08-07
Fast and Accurate Detection of COVID-19 Along With 14 Other Chest Pathologies Using a Multi-Level Classification: Algorithm Development and Validation Study
2021-02-10, Journal of medical Internet research IF:5.8Q1
研究论文 本文提出了一种基于深度学习的多级分类管道,用于快速准确地检测COVID-19及其他14种胸部疾病,并通过X射线图像进行验证 该研究通过多级分类方法,将分类任务分解为多个步骤,提高了COVID-19及其他胸部疾病的检测准确性 由于某些类别如COVID-19的数据缺乏,采用了10折交叉验证,可能影响模型的泛化能力 实现对COVID-19的快速且更准确的诊断 COVID-19及其他14种胸部疾病的X射线图像 机器学习 COVID-19 深度学习 ResNet50 图像 涉及16个类别的X射线图像
19776 2024-08-07
Quantitative Assessment of Chest CT Patterns in COVID-19 and Bacterial Pneumonia Patients: a Deep Learning Perspective
2021-Feb-01, Journal of Korean medical science IF:3.0Q1
研究论文 本研究通过深度学习方法对COVID-19和细菌性肺炎患者的胸部CT图像进行定量评估,以区分这两种疾病的细微差异 提出了一种新的深度学习方法,通过构建病灶簇和直方图特征来提高疾病分类和严重程度评估的准确性 研究为回顾性队列研究,样本来自单一医院,可能存在样本偏倚 设计并评估可解释的特征提取技术,以描述COVID-19和细菌性肺炎患者的病情 COVID-19和细菌性肺炎患者的胸部CT图像 计算机视觉 COVID-19 K-means算法 支持向量机 图像 170名确诊的COVID-19或细菌性肺炎患者
19777 2024-08-07
Disease Concept-Embedding Based on the Self-Supervised Method for Medical Information Extraction from Electronic Health Records and Disease Retrieval: Algorithm Development and Validation Study
2021-01-27, Journal of medical Internet research IF:5.8Q1
研究论文 本研究开发并验证了一种基于自监督方法的疾病概念嵌入模型,用于从电子健康记录中提取医疗信息并进行疾病检索 提出了一种基于Transformer的模型,结合BERT和对比学习方法(DIM和SimCLR)进行疾病概念的无监督嵌入 使用较小的数据集或较少的无监督预训练方法会降低预测性能 创建一个模型从电子健康记录中提取概念嵌入,用于疾病模式检索和进一步分类任务 从电子健康记录中提取医疗信息并进行疾病检索 自然语言处理 NA Transformer, BERT, DIM, SimCLR Transformer 文本 1,040,989次急诊部门访问和305,897个样本
19778 2024-08-07
Integrating deep learning CT-scan model, biological and clinical variables to predict severity of COVID-19 patients
2021-01-27, Nature communications IF:14.7Q1
研究论文 本文通过整合深度学习CT扫描模型、生物学和临床变量来预测COVID-19患者的严重程度 构建了包含深度学习模型和五个临床生物学变量的多模态AI严重程度评分,显著提高了预测性能 深度学习模型提供的预后信息与其他严重程度标志物相关,导致AUC增加有限 识别COVID-19疾病严重程度的预测因子 COVID-19患者 机器学习 COVID-19 深度学习 神经网络 CT扫描图像 1003名冠状病毒感染患者
19779 2024-08-07
Prediction of Alzheimer's disease-specific phospholipase c gamma-1 SNV by deep learning-based approach for high-throughput screening
2021-01-19, Proceedings of the National Academy of Sciences of the United States of America IF:9.4Q1
研究论文 本研究利用全基因组关联研究(GWAS)和基于深度学习的剪接预测工具,发现阿尔茨海默病(AD)特异性的单核苷酸变异(SNV)及磷脂酶c gamma-1基因的异常剪接 本研究结合计算和深度学习分析,首次预测了与AD相关的关键SNV,并展示了其在AD预测中的临床应用潜力 NA 旨在发现阿尔茨海默病特异性的单核苷酸变异及其对基因剪接的影响 阿尔茨海默病特异性的单核苷酸变异和磷脂酶c gamma-1基因的异常剪接 机器学习 阿尔茨海默病 全基因组关联研究(GWAS) 深度学习 基因序列 使用AD小鼠模型和人类基因序列进行训练和预测
19780 2024-08-07
Assessing the Role of Pericardial Fat as a Biomarker Connected to Coronary Calcification-A Deep Learning Based Approach Using Fully Automated Body Composition Analysis
2021-Jan-19, Journal of clinical medicine IF:3.0Q1
研究论文 本研究使用深度学习方法,通过全自动体成分分析评估心包脂肪作为冠状动脉钙化的生物标志物的角色 本研究首次证明了全自动脂肪组织分析在临床心脏CT中的可行性,并在大规模临床队列中确认了EAT和PAT的体积和密度与CACS无相关性 研究结果显示EAT和PAT的体积和密度与CACS无显著相关性,但未达到男性患者EAT衰减的显著性水平 探索全自动EAT和PAT量化在心血管风险分层中的潜在应用 966名具有中等Framingham风险评分的冠状动脉疾病患者 数字病理学 心血管疾病 深度学习 深度学习网络 CT图像 966名患者
回到顶部