深度学习在生物医药领域的应用

本数据库通过收集和整理最新科研文献信息而得,供了解领域前沿进展之用。数据源自 PubMed Data ,每日自动更新(使用关键词“['deep learning']”过滤),已收录文献数量参见 统计表格。表格内容由 GPT 自动整理,可能存在错误或遗漏,请使用时务必注意核实!

如有建议或合作意向,欢迎联系 linlin.yan(AT)bioinfo.app 或 微信 yanlinlin82。本项目遵循 MIT 许可 发布,欢迎下载 源码 自行修改使用。如觉得不错,还请不吝 给我打赏,你的支持是我继续创新的重要动力!

Sample Image
添加微信请说明来意
Sample Image
微信赞赏

除通过在线浏览外,为方便用户离线查阅,本站也提供 付费下载(定价19.9元)。之所以考虑收费,是因为批量扫描这些文献并整理也是有一定成本的,还请理解并多多支持。本站数据会持续更新,而仅需一次付费,未来就可以随时重新下载到最新版本数据。

当前筛选条件: [分区不过滤] [IF不过滤] [发表日期不过滤] [清除筛选条件]
当前共找到 36465 篇文献,本页显示第 1961 - 1980 篇。
序号 推送日期 文章 类型 简述 创新点 不足 研究目的 研究对象 领域 病种 技术 模型 数据类型 样本量 算法框架 模型架构 性能指标 计算资源
1961 2025-12-02
New chapter in pediatric medicine: technological evolution, application, and evaluation system of large language models
2025-Dec-01, European journal of pediatrics IF:3.0Q1
综述 本文综述了基于深度学习的大语言模型在儿科医学领域的技术演进、应用及评估体系 重点探讨了通用模型的发展与规模化、医学专用模型的定制训练、以及多模态与专家混合架构的出现,并突出了在儿科剂量计算、专科临床决策支持和病历结构化等具体应用 讨论了评估指标、伦理法律挑战以及多语言与低资源环境下的考量,但未具体说明模型在真实临床环境中的验证局限 回顾大语言模型技术的最新进展,并探讨其在儿科医学领域的应用潜力与挑战 大语言模型及其在儿科医学中的应用 自然语言处理 NA 深度学习 大语言模型 文本 NA NA NA 评估指标(未具体说明) NA
1962 2025-12-02
Enhancing Pediatric Fracture Detection: Multicenter Evaluation of a Deep Learning AI Model and Its Impact on Radiologist Performance
2025-Nov-29, Academic radiology IF:3.8Q1
研究论文 本研究评估了一种基于深度学习的AI模型在儿科骨折检测中的效能,并分析了AI辅助对放射科医生诊断性能的影响 通过多中心、多读者研究验证AI模型在儿科骨折检测中的高准确性,并首次量化了AI辅助对放射科医生诊断效率和信心的提升效果 研究为回顾性设计,可能受到选择偏倚的影响;未评估AI模型在罕见骨折类型或复杂病例中的表现 评估深度学习AI模型在儿科骨折检测中的临床效用及其对放射科医生诊断性能的影响 儿科患者的肌肉骨骼X光片 计算机视觉 儿科骨折 X光成像 深度学习模型 图像 第一阶段3016张X光片,第二阶段189个病例 NA NA 准确率, 灵敏度, 特异性 NA
1963 2025-12-02
Total-Body PET/CT Metabolic Response in Esophageal Squamous Cell Carcinoma
2025-Nov-29, Seminars in nuclear medicine IF:4.6Q1
综述 本文综述了全身PET/CT在食管鳞状细胞癌代谢反应评估中的应用,强调了其技术优势和临床潜力 介绍了具有194厘米长轴视野的全身PET/CT系统,其灵敏度比传统系统高68倍,并探讨了延迟成像、双时相成像及基于深度学习的合成CT技术以提高病灶检测能力 NA 评估全身PET/CT在食管鳞状细胞癌新辅助治疗反应监测中的可行性和定量能力 食管鳞状细胞癌患者 数字病理学 食管癌 PET/CT成像,[F]FDG PET/CT,[F]或[Ga]Ga标记的成纤维细胞激活蛋白抑制剂PET/CT NA 医学影像(PET/CT图像) NA NA NA NA NA
1964 2025-12-02
EEG-SGENet: A lightweight convolutional network integrating SGE for motor imagery brain-computer interfaces
2025-Nov-28, Neuroscience IF:2.9Q2
研究论文 本文提出了一种轻量级卷积神经网络EEG-SGENet,用于运动想象脑机接口的脑电信号解码 引入空间分组增强(SGE)模块,通过生成每个语义组空间位置的注意力因子来调整子特征的重要性,从而增强有用特征并抑制噪声,同时保持模型轻量化 NA 在运动想象脑机接口分类研究中平衡准确率与计算成本 基于脑电图的运动想象脑机接口 机器学习 NA 脑电图 CNN 脑电信号 NA NA EEG-SGENet 准确率 NA
1965 2025-12-02
Clinical applications of artificial intelligence in the histopathology of lymphoma: diagnosis, treatment and prognosis
2025-Nov-28, Discover oncology IF:2.8Q2
综述 本文综述了人工智能在淋巴瘤组织病理学中的临床应用,涵盖诊断、治疗和预后评估 创新性地总结了人工智能在淋巴瘤三维病理学中的前沿应用,并系统分析了其在诊断、治疗和预后方面的临床价值 NA 概述人工智能在淋巴瘤各领域的应用,促进淋巴瘤的精准诊断和治疗 淋巴瘤的HE病理切片和PET/CT图像 数字病理学 淋巴瘤 NA 深度学习, 决策树, 回归模型 图像 NA NA NA NA NA
1966 2025-12-02
Preserving and enhancing cultural heritage through art design using feature pyramid network optimized by modified builder optimization algorithm
2025-Nov-28, Scientific reports IF:3.8Q1
研究论文 本文提出了一种结合特征金字塔网络和改进型建造者优化算法的深度学习框架,用于文化遗产艺术品的分类、修复与合成 首次将特征金字塔网络与改进型建造者优化算法相结合,并引入创新的仿生搜索策略优化超参数,提升了模型收敛性、性能与训练效率 研究仅基于WikiArt数据集,未涵盖所有文化遗产艺术形式;优化算法在更复杂场景下的泛化能力有待验证 通过数字技术保护和增强文化遗产,开发艺术品分类、修复与生成的新方法 文化遗产艺术品(绘画等视觉艺术作品) 计算机视觉 NA 深度学习,神经风格迁移 CNN, 生成模型 图像 WikiArt数据集(具体数量未说明) 未明确说明 Feature Pyramid Network (FPN) 准确率, PSNR, SSIM, FID NA
1967 2025-12-02
The usage of artificial Intelligence-empowered text analysis model with convolutional neural network in english reading
2025-Nov-28, Scientific reports IF:3.8Q1
研究论文 本研究首次在真实课堂环境中系统应用Text CNN模型,开发了一个集动态内容推荐与实时反馈于一体的教学辅助框架,以解决高中英语阅读教学中个性化不足的核心问题 首次在真实课堂环境中系统应用Text CNN模型,并开发了结合动态内容推荐与实时反馈的教学辅助框架 研究仅在2000篇文本的有限数据集上验证,模型在非结构化文本(如社交媒体帖子或法律文件)上的性能仍有待探索 解决高中英语阅读教学中个性化不足的问题,开发智能教学辅助工具 高中英语阅读教学与学生 自然语言处理 NA 深度学习,多尺度特征提取,注意力机制 CNN 文本 60名学生(分为实验组和对照组),2000篇文本数据集 NA Text CNN 分类准确率,阅读理解平均分 NA
1968 2025-12-02
AI meets endodontics a deep learning approach to precision diagnosis
2025-Nov-28, Scientific reports IF:3.8Q1
研究论文 本文提出了一种基于改进Swin Transformer的深度学习模型,用于牙髓病的精确诊断 采用改进的Swin Transformer架构,结合非重叠局部窗口和交替层中的移位窗口,实现分层注意力机制,并引入混沌粒子群优化与序列二次规划的混合方法进行超参数优化 未明确提及模型在临床实际应用中的泛化能力或外部验证结果 提高牙髓病的自动分类准确性,以辅助治疗规划和临床决策 牙髓病影像数据 计算机视觉 牙髓病 放射影像分析 Transformer 图像 基于公开的根管数据集,包含七类牙髓疾病,具体样本数量未明确 未明确指定,可能为PyTorch或TensorFlow 改进的Swin Transformer(MSViT) 分类准确率, 平均适应度值, 精确率, 均方误差, 计算时间 未明确指定,学习率为0.0001
1969 2025-12-02
Exploring the predictive performance of deep learning for fracturing fluid flowback and shale gas production
2025-Nov-28, Scientific reports IF:3.8Q1
研究论文 本文开发了一种结合CNN和Transformer网络的深度学习系统,用于预测页岩气产量和压裂液返排量 首次将CNN与Transformer网络结合,构建CNN-Transformer模型,以处理页岩气生产中的复杂两相流和噪声干扰问题 未明确提及模型的具体泛化能力或在不同地质条件下的适用性 预测页岩气产量和压裂液返排量,并分析两者之间的关系 页岩气生产数据和压裂液返排数据 机器学习 NA 深度学习 CNN, Transformer, LSTM, GRU 时间序列数据 NA NA CNN-Transformer, CNN-LSTM, CNN-GRU-AM R², RMSE, R NA
1970 2025-12-02
Comparative study of single and hybrid deep learning models for daily rainfall prediction in selected African cities
2025-Nov-28, Scientific reports IF:3.8Q1
研究论文 本研究比较了单一和混合深度学习模型在非洲选定城市日降雨量预测中的性能 首次在非洲多个城市中系统比较了单一深度学习模型(CNN、LSTM、ANN、RNN)与三种混合架构(RNN+ANN、LSTM+ANN、LSTM+RNN)的预测效果,并揭示了不同城市降雨动态的空间变异性 研究仅基于NASA MERRA-2再分析数据,未结合地面观测数据;模型性能评估限于四个误差指标,可能未全面反映预测质量;研究城市数量有限,结论的普适性有待进一步验证 评估和比较不同深度学习模型在日降雨量预测中的准确性和可靠性,以支持农业规划和粮食安全 非洲选定城市(如阿布贾、利伯维尔、拉巴特、比勒陀利亚等)的日降雨量及相关气象变量 机器学习 NA 深度学习建模 CNN, LSTM, ANN, RNN 时间序列气象数据 1980年1月1日至2024年12月31日的日尺度数据,按80/20比例划分训练验证集 NA CNN, LSTM, ANN, RNN, RNN+ANN, LSTM+ANN, LSTM+RNN MSE, RMSE, MAE, Huber loss NA
1971 2025-12-02
A novel deep neural model for efficient and scalable historical place image classification
2025-Nov-28, Scientific reports IF:3.8Q1
研究论文 本文提出了一种名为HistoNet的新型混合深度学习框架,用于高效且可扩展的历史地点图像分类 提出了一种结合CNN、Transformer和Mamba状态空间模型的混合架构,具有线性时间复杂度,计算效率显著高于传统Transformer;集成了Squeeze-and-Exitation注意力模块和基于SHAP的可解释性方法,提供像素级归因图 未明确说明模型在更广泛地理区域或更古老建筑风格上的泛化能力,也未讨论模型对极低质量或严重损坏图像的鲁棒性 开发一个高效、可扩展且可解释的深度学习系统,用于历史地点图像分类,以促进文化遗产的数字保护 历史地点和建筑的图像 计算机视觉 NA NA CNN, Transformer, Mamba 图像 NA NA VGG16, ResNet50, HistoNet(自定义混合架构) 准确率 NA
1972 2025-12-02
Computed tomography-based nnU-Net for region-specific brain structural changes across the alzheimer's continuum and frontotemporal dementia subtypes
2025-Nov-28, Scientific reports IF:3.8Q1
研究论文 本研究开发了一种基于nnU-Net的深度学习框架,利用计算机断层扫描(CT)进行脑部分割,以评估脑脊液体积变化作为组织损失的间接标志物,并在阿尔茨海默病(AD)阶段和额颞叶痴呆(FTD)亚型中评估其效用 首次使用CT图像结合nnU-Net进行脑部分割,以脑脊液体积变化作为间接标志物,评估神经退行性疾病的结构变化,并应用于AD连续体和FTD亚型的鉴别诊断 研究依赖于CT图像,其分辨率可能低于MRI,且脑脊液体积变化仅为组织损失的间接标志物,可能无法直接反映所有结构变化 开发一种基于CT的深度学习框架,用于评估神经退行性疾病中的脑结构变化,以支持早期检测和鉴别诊断 2357名参与者,包括认知未受损者、轻度认知障碍者、阿尔茨海默型痴呆患者以及额颞叶痴呆亚型患者 数字病理学 阿尔茨海默病, 额颞叶痴呆 计算机断层扫描(CT), 3D T1加权磁共振成像(MRI) CNN 图像 2357名参与者 nnU-Net nnU-Net Dice相似系数(DSC), 相关性分析, Bland-Altman分析 NA
1973 2025-12-02
Demand forecasting of smart tourism integrating spatial metrology and deep learning
2025-Nov-28, Scientific reports IF:3.8Q1
研究论文 本文提出了一种融合空间计量经济学模型与深度学习的智能旅游需求预测框架,旨在提升预测的动态感知能力和准确性 提出了一种将空间计量模型(用于构建地理依赖结构)与LSTM网络(用于时间序列建模)相融合的联合预测框架,在时间序列建模与空间结构识别之间取得了平衡 NA 提升智能旅游场景下旅游需求预测的动态感知能力和准确性 旅游需求 机器学习 NA NA LSTM 游客流量数据,在线旅游行为数据,GPS轨迹数据 使用了三类数据集:北京景区游客流量数据、携程在线旅游行为数据和GeoLife GPS轨迹数据 NA LSTM MAE, RMSE, MAPE, R, 残差Moran's I, 空间R NA
1974 2025-12-02
FlameGuard: an AI-driven smart map for early detection and management of agricultural fires in Saudi Arabia
2025-Nov-28, Scientific reports IF:3.8Q1
研究论文 本研究提出了一个名为FlameGuard的地理空间AI框架,用于利用热卫星图像数据对农业火灾置信度进行分类和早期检测 开发了一个集成了基于光谱规则的模型(SAFD)、机器学习、深度学习以及基于Transformer的大语言模型(LLM)的多模型预测架构,实现了高精度(最高100%)和亚小时级延迟的火灾检测,超越了现有系统 未明确说明模型在极端天气条件或不同地理环境下的泛化能力,也未详细讨论系统部署的长期维护和更新成本 开发一个先进的、可扩展的AI驱动系统,用于沙特阿拉伯农业火灾的早期检测和管理 沙特阿拉伯干旱和半干旱地区的农业火灾 计算机视觉, 机器学习 NA 热卫星遥感成像 Random Forest, XGBoost, 神经网络, Transformer-based LLM 热卫星图像 NA Keras, TensorFlow/PyTorch (推断) 自定义神经网络, Minos, ViRanker 准确率, F1分数, 期望校准误差 (ECE), 训练时间, 推理延迟 NA
1975 2025-12-02
CIRCA: comprehensible online system in support of chest X-rays-based screening by COVID-19 example
2025-Nov-28, Scientific reports IF:3.8Q1
研究论文 本文提出了一个名为CIRCA的在线系统,用于支持基于胸部X光片的筛查,并以COVID-19为例进行验证 开发了一个综合管道,包括肺部分割、数据异质性定量评估以及使用卷积网络和放射组学特征的分层三分类决策系统,并识别了每个类别的放射组学亚型 系统在特定亚型(如N3、C3和P3)的阳性预测值较低,且可能受数据集特定亚型比例影响泛化能力 开发一个可理解的在线系统,以支持基于胸部X光片的疾病筛查,特别是针对COVID-19 胸部X光片图像 数字病理学 COVID-19 胸部X光成像 CNN 图像 使用6个不同数据集 未指定 未指定 准确率, NPV, PPV NA
1976 2025-12-02
Assessing the performance of a Trombe wall enhanced with phase change material using deep learning
2025-Nov-28, Scientific reports IF:3.8Q1
研究论文 本文开发了一种结合CNN和LSTM的深度学习模型,用于预测相变材料增强型特朗伯墙的热效率 提出了一种结合CNN和LSTM的深度学习模型来预测相变材料增强型特朗伯墙的热效率,该模型在热行为预测中考虑了相变材料的热存储能力,并展示了良好的泛化能力 NA 开发可靠的深度学习预测模型以确定相变材料增强型特朗伯墙的热效率 相变材料增强型特朗伯墙的热效率 机器学习 NA NA CNN, LSTM 时间序列数据(包括温度、湿度、风速、太阳辐射强度等) NA NA CNN+LSTM 决定系数, 平均绝对误差, 均方根误差 NA
1977 2025-12-02
Deep learning-based classification of benign and malignant breast microcalcifications in mammography
2025-Nov-28, Scientific reports IF:3.8Q1
研究论文 本研究评估了ResNet和EfficientNet模型在乳腺X线摄影中良恶性微钙化分类的性能 首次系统比较了ResNet和EfficientNet模型在乳腺微钙化分类任务中的表现,并发现EfficientNet模型显著优于ResNet变体 研究仅基于单一数据集,且未考虑其他深度学习架构或更广泛的临床变量 评估不同深度学习模型在乳腺X线摄影中良恶性微钙化分类的性能 乳腺X线摄影图像中的微钙化区域 计算机视觉 乳腺癌 乳腺X线摄影 CNN 图像 3,674张乳腺X线摄影切片 NA ResNet-50, ResNet-101, EfficientNet-B0, EfficientNet-B1, EfficientNet-B2, EfficientNet-B3, EfficientNet-B4 准确率, AUC, 加权F1分数 NA
1978 2025-12-02
A deep learning-based intelligent curriculum system for enhancing public music education: a case study across three universities in Southwest China
2025-Nov-28, Scientific reports IF:3.8Q1
研究论文 本研究介绍了一个基于深度学习的智能课程系统,用于提升中国西南地区高校的公共音乐教育质量 利用LSTM和Transformer模型分析实时学习数据,预测掌握趋势,并通过云端界面提供个性化反馈,为艺术教育在文化多样、数据稀缺环境中的AI整合提供了可扩展解决方案 研究仅在中国西南地区三所大学进行,样本范围有限,且未详细讨论长期效果或系统在不同文化背景下的普适性 通过AI技术增强公共音乐教育,响应国家美育改革,并探索在艺术教育中集成先进计算的方法 中国西南地区三所大学(贵州民族大学、贵州大学、西昌大学)的学生 自然语言处理 NA 深度学习 LSTM, Transformer 学习行为数据 三所大学的学生群体,具体数量未明确 未明确指定,但提及云端界面 LSTM, Transformer 后测掌握分数提升百分比(32%更高),预测模型准确度(RMSE < 0.15) 云端平台
1979 2025-12-02
Normal twin PET: personalized generative modeling for confounder correction and anomaly detection in whole-body PET/CT
2025-Nov-28, Scientific reports IF:3.8Q1
研究论文 本文提出了一种深度学习方法来生成患者特异性正常孪生PET图像,用于全身PET/CT成像中的定量分析和无监督病理异常检测 引入了“孪生校正”方法,可减少高达90%的SUV方差,并成功降低患者性别、年龄、脂肪量和摄取时间等混杂因素的影响 模型训练依赖于伪正常PET/CT研究,可能无法完全覆盖所有正常变异;在AutoPET数据集上的Dice分数为49.3%,仍有提升空间 开发一种无监督的病理异常检测和肿瘤分割方法,用于全身PET/CT成像分析 全身PET/CT图像,包括稳定淋巴瘤患者和手动疾病掩蔽的临床扫描 数字病理学 淋巴瘤 PET/CT成像 生成模型 图像 2,538个伪正常PET/CT研究用于训练,177个测试研究用于评估 NA 图像到图像生成模型 解释方差,平均绝对相对误差,Dice系数 NA
1980 2025-12-02
Impact of U2-type introns on splice site prediction in A. thaliana species using deep learning
2025-Nov-28, BMC bioinformatics IF:2.9Q1
研究论文 本研究利用深度学习模型探讨了U2型内含子对拟南芥物种剪接位点预测的影响 首次系统分析了短内含子和多内含子序列对剪接位点预测效果的影响,揭示了内含子长度与剪接位点预测之间的复杂关系 研究仅针对拟南芥物种,未扩展到其他植物基因组;模型可能未考虑所有剪接相关信号的空间排列因素 探究U2型内含子特征对植物基因组剪接位点预测的影响 拟南芥基因组中的剪接位点,特别是U2型内含子相关的供体和受体位点 自然语言处理 NA 深度学习 深度学习模型 基因组序列数据 供体位点:36,399个单内含子序列和13,987个多内含子序列;受体位点:37,236个单内含子序列和14,112个多内含子序列 NA NA 预测效果 NA
回到顶部