深度学习在生物医药领域的应用

本数据库通过收集和整理最新科研文献信息而得,供了解领域前沿进展之用。数据源自 PubMed Data ,每日自动更新(使用关键词“['deep learning']”过滤),已收录文献数量参见 统计表格。表格内容由 GPT 自动整理,可能存在错误或遗漏,请使用时务必注意核实!

如有建议或合作意向,欢迎联系 linlin.yan(AT)bioinfo.app 或 微信 yanlinlin82。本项目遵循 MIT 许可 发布,欢迎下载 源码 自行修改使用。如觉得不错,还请不吝 给我打赏,你的支持是我继续创新的重要动力!

Sample Image
添加微信请说明来意
Sample Image
微信赞赏

除通过在线浏览外,为方便用户离线查阅,本站也提供 付费下载(定价19.9元)。之所以考虑收费,是因为批量扫描这些文献并整理也是有一定成本的,还请理解并多多支持。本站数据会持续更新,而仅需一次付费,未来就可以随时重新下载到最新版本数据。

当前筛选条件: [分区不过滤] [IF不过滤] [发表日期不过滤] [清除筛选条件]
当前共找到 38938 篇文献,本页显示第 1961 - 1980 篇。
序号 推送日期 文章 类型 简述 创新点 不足 研究目的 研究对象 领域 病种 技术 模型 数据类型 样本量 算法框架 模型架构 性能指标 计算资源
1961 2026-01-06
Long-term, ambulatory 12-lead ECG from a single non-standard lead using perceptual reconstruction
2025-Dec-19, medRxiv : the preprint server for health sciences
研究论文 本研究提出了一种基于深度学习的方法,从单个非标准导联(模拟植入式心脏监测器信号)重建12导联心电图,用于连续监测心脏功能变化 首次使用感知损失训练深度U-Net模型(ECG12-PerceptNet),从单个ICM导联重建12导联心电图,实现了对传导、复极、心律和心脏功能变化的连续监测 研究基于模拟ICM信号进行重建,未在真实ICM设备上验证;样本标注依赖于临床医生解释的规则解析,可能存在偏差 从单个ICM导联重建12导联心电图,以检测心脏传导、复极、心律和功能变化 75,450个超声心动图-心电图配对数据,标注了右束支传导阻滞、左束支传导阻滞、心房颤动、QT间期延长和低左心室射血分数五种疾病标签 机器学习 心血管疾病 心电图信号处理,深度学习重建 U-Net 心电图信号 75,450个超声心动图-心电图配对样本 NA U-Net 分类性能(具体指标未明确),回归模型预测左心室射血分数 NA
1962 2026-01-06
Learning Patient Similarity from Genomics for Precision Oncology
2025-Dec-18, medRxiv : the preprint server for health sciences
研究论文 本文开发了一个基于深度学习的患者相似性建模框架,利用真实世界的临床基因组数据,通过嵌入肿瘤基因组图谱来测量患者相似性,并评估患者亚组与共享治疗结果之间的关联 该框架能够从复杂的分子和临床数据中提取简洁、上下文特定的见解,支持无可用生物标志物或未知原发癌症患者的决策,并在持续学习场景中随时间动态更新 未明确提及具体局限性,可能包括数据来源的单一性、模型泛化能力或临床验证的不足 开发一个基于患者相似性的决策支持模型,以促进精准肿瘤学的更广泛实现 乳腺癌患者和泛癌种患者,包括无可用基因组生物标志物或未知原发癌症的患者 机器学习 癌症 肿瘤基因组分析 深度学习 基因组数据和临床数据 NA NA NA NA NA
1963 2026-01-06
A deep learning framework for comprehensive segmentation of deep grey nuclei
2025-Dec-18, medRxiv : the preprint server for health sciences
研究论文 本文介绍了一个名为THOMASINA的深度学习框架,用于从标准T1加权和WMn MRI中全面分割深部灰质核团 结合合成WMn对比度与先进的深度学习分割模型,提供快速、可重复且可扩展的解决方案,解决了传统多图谱分割方法的预处理时间长和工具分散问题 未明确说明数据集的详细样本特征或潜在偏差,且合成WMn对比度的有效性可能依赖于特定成像条件 开发一个深度学习框架,以准确、高效地分割深部灰质核团,用于神经疾病研究和生物标志物发现 深部灰质结构,如丘脑和基底核,从标准T1加权和WMn MRI图像中 计算机视觉 神经疾病 MRI成像,包括T1加权和WMn对比 深度学习模型 医学图像(MRI) 未在摘要中明确指定具体样本数量 未指定具体框架,但可能基于PyTorch或TensorFlow等深度学习库 SwinUNETR, DiNTS, SegResNet Dice系数 未在摘要中明确指定
1964 2026-01-06
Deciphering the biological underpinnings behind prognostic MRI-based imaging signatures in breast cancer: a systematic review
2025-Dec-17, Journal of translational medicine IF:6.1Q1
综述 本文系统回顾了乳腺癌中基于MRI的预后影像特征(包括放射组学和深度学习特征)的生物学基础,并评估了现有研究的方法学质量 首次系统性地综述了乳腺癌预后影像特征的生物学关联,并整合了放射组学和深度学习方法,强调了从影像到多组学数据的生物学解释 纳入研究的方法学严谨性有限,整体偏倚风险较高,且样本量范围较大(61-2279例),可能影响结论的普适性 探索乳腺癌MRI预后影像特征的生物学基础,并评估相关研究的方法学质量 乳腺癌患者 数字病理学 乳腺癌 MRI, 基因组学, 转录组学, 多组学分析 监督机器学习, 无监督机器学习 影像数据, 基因组数据, 转录组数据, 多组学数据 16项研究,共涉及61至2279名乳腺癌患者 NA NA NA NA
1965 2026-01-06
De novo design of protein competitors for small molecule immunosensing
2025-Dec-16, bioRxiv : the preprint server for biology
研究论文 本文利用深度学习模型设计蛋白质竞争性结合剂,用于小分子免疫传感,实现了对地高辛的灵敏检测 采用BindCraft管道设计针对抗原结合位点的竞争性结合剂,并通过筛选选择与小分子分析物产生空间冲突的结合剂,避免了传统竞争性免疫分析中需要定制合成竞争分子的繁琐步骤 设计的结合剂结合亲和力从低到中等(42 nM - 1.1 μM),可能在某些高灵敏度应用中受限 开发一种基于深度学习设计蛋白质竞争性结合剂的方法,以简化小分子生物标志物的竞争性免疫分析 小分子生物标志物(如地高辛)的检测 机器学习 NA 竞争性免疫分析,生物发光测定 深度学习模型 NA 在细菌裂解液中直接筛选了10个结合剂,其中7个成功 NA BindCraft管道 结合亲和力(Kd),检测灵敏度(IC50) NA
1966 2026-01-06
scCotag: Diagonal integration of single-cell multi-omics data via prior-informed co-optimal transport and regularized barycentric mapping
2025-Dec-15, bioRxiv : the preprint server for biology
研究论文 本文提出了一种名为scCotag的深度学习框架,用于单细胞多组学数据的对角线整合,通过先验信息引导的共最优传输和正则化重心映射来提高细胞对齐和特征嵌入的准确性 该方法首次结合先验信息引导的共最优传输(COOT)与正则化重心映射,迭代推断细胞对齐和特征对应关系,解决了现有方法假设所有细胞可对齐且先验特征对应完全可靠的局限性 未明确说明计算资源需求或框架在超大规模数据集上的可扩展性限制 开发一种鲁棒的单细胞多组学数据对角线整合方法,以提升细胞对齐精度和生物调控机制的细粒度解析 单细胞RNA-seq和ATAC-seq数据,涉及人类大脑、骨髓和血液样本,以及阿尔茨海默病(AD)和非AD(NoAD)患者的死后脑组织数据 机器学习 阿尔茨海默病 单细胞RNA-seq, ATAC-seq 深度学习框架 单细胞多组学数据 涉及人类大脑、骨髓和血液数据集,具体样本数量未明确说明 未明确指定(如TensorFlow, PyTorch等),但基于深度学习框架 基于共最优传输(COOT)和正则化重心映射的定制架构 细胞对齐精度, 嵌入精度 NA
1967 2026-01-06
Multimodality Artificial Intelligence for Involved-Site Radiation Therapy: Clinical Target Volume Delineation in High-Risk Pediatric Hodgkin Lymphoma
2025-Dec-13, International journal of radiation oncology, biology, physics
研究论文 本文开发了一种集成多模态成像的深度学习模型,用于自动化高风险儿童霍奇金淋巴瘤受累部位放疗的临床靶区勾画 首次将多时间点PET/CT图像与计划CT结合,利用SwinUNETR等深度学习架构实现临床靶区的自动分割,显著优于仅使用计划CT的模型 研究样本仅限于儿童高风险霍奇金淋巴瘤患者,模型在外部测试中的性能仍有提升空间,且临床评估样本量较小 开发自动化临床靶区分割算法,以促进受累部位放疗计划制定 288名儿童高风险霍奇金淋巴瘤患者的计划CT、基线PET/CT和中期PET/CT扫描 数字病理 霍奇金淋巴瘤 PET/CT成像 深度学习 图像 288名患者,其中230例用于模型开发,58例用于外部测试 NA SegResNet, ResUNet, SwinUNETR Dice相似系数, 95% Hausdorff距离 NA
1968 2026-01-06
Lightweight deep learning models for EEG decoding: a review
2025-Dec-12, Journal of neural engineering IF:3.7Q2
综述 本文系统回顾了用于脑电图信号分类的轻量级深度学习模型 将现有轻量级模型方法归纳为三大策略:基于多尺度特征融合的信息整合策略、隐藏层优化策略以及基于结构优化的混合改进策略,并综合了最新进展、识别新兴趋势并展望未来研究方向 NA 回顾轻量级深度学习模型在脑电图解码中的应用,旨在为设计高效、鲁棒的脑机接口分类架构提供参考 脑电图信号 机器学习 NA NA 深度神经网络 脑电图信号 NA NA NA NA NA
1969 2026-01-06
[The orthodontic diagnosis]
2025-Dec-09, Nederlands tijdschrift voor tandheelkunde
综述 本文探讨了正畸诊断的基础、分类系统、技术发展(如人工智能)及其在临床实践中的应用与局限性 强调了人工智能和深度学习在提升正畸诊断测量与分类可靠性方面的作用,同时指出其在准确性和透明度方面的挑战 人工智能在准确性和透明度方面仍存在挑战,且无法替代临床评估,复杂病例仍需人工解释和跨学科合作 综述正畸诊断的方法、技术发展及其在临床决策中的应用 正畸诊断中的骨骼、牙齿和功能异常评估 NA NA 人工智能,深度学习 NA NA NA NA NA NA NA
1970 2026-01-06
Landscape of 2D Deep Learning Segmentation Networks Applied to CT Scan from Lung Cancer Patients: A Systematic Review
2025-Dec, Journal of imaging informatics in medicine
系统性综述 本文系统综述了应用于肺癌患者CT扫描的2D深度学习分割网络的现状与前景 系统性地总结了2020年至2024年间2D深度学习网络在肺癌CT分割中的应用,并识别了研究中的关键概念与主要差距 综述主要基于2020年至2024年的文献,可能未涵盖更早或最新的技术发展;且纳入的124项研究可能存在发表偏倚 评估2D深度学习网络在肺癌CT图像分割中的当前应用与未来潜力,以改善诊断、治疗和患者生存 肺癌患者的CT扫描图像 计算机视觉 肺癌 CT扫描 CNN 图像 基于124项符合纳入标准的研究,具体样本量未在摘要中明确给出,但提及LIDC-LIDR数据集是最常用数据集 NA U-Net及其变体 Dice相似系数 NA
1971 2026-01-06
Deep Learning for the Diagnosis and Treatment of Thyroid Cancer: A Review
2025-Dec, Endocrine practice : official journal of the American College of Endocrinology and the American Association of Clinical Endocrinologists IF:3.7Q2
综述 本文综述了深度学习在甲状腺癌诊断与治疗中的应用进展 系统总结了深度学习在甲状腺癌诊断、治疗及预后预测中的最新应用,并指出了技术、临床和伦理方面的挑战 深度学习在临床广泛采用仍面临显著的技术、临床和伦理障碍 为临床医生提供深度学习应用于甲状腺癌诊断与治疗的最新研究进展 甲状腺癌 数字病理学 甲状腺癌 深度学习 CNN, LSTM, GAN 超声图像, 病理图像 NA NA 卷积神经网络, 长短期记忆网络, 生成对抗网络 NA NA
1972 2026-01-06
Segmentation of honeycomb cysts, traction bronchiectasis and emphysematous lung parenchyma using the deep learning method
2025-Dec, Tuberkuloz ve toraks
研究论文 本研究利用深度学习技术,在HRCT图像上对蜂窝囊肿、牵拉性支气管扩张和肺气肿区域进行分割 首次将U-Net架构应用于MinIP图像,对间质性肺病分类的关键参数(蜂窝囊肿、牵拉性支气管扩张和肺气肿)进行自动分割 研究仅包含265例患者,样本量有限;未明确说明深度学习模型的具体训练细节和超参数设置 开发基于深度学习的医学图像分割方法,辅助间质性肺病的分类诊断 265例被诊断为寻常型间质性肺炎患者的HRCT图像 数字病理学 肺病 高分辨率计算机断层扫描 深度学习 医学图像 265例患者 NA U-Net 灵敏度, 精确度, F1分数, AUC, 准确度 NA
1973 2026-01-06
Deep learning classification of INSV-associated weeds in Monterey county using a curated RGB image dataset
2025-Nov-26, Scientific reports IF:3.8Q1
研究论文 本研究利用深度学习模型对加利福尼亚州蒙特雷县与INSV病毒相关的两种杂草进行分类,旨在通过图像识别技术实现早期杂草检测和病害预防 首次构建了针对蒙特雷县INSV相关杂草的高分辨率图像数据集,填补了现有全球数据集的空白,并在模拟田间变异性的温室条件下评估了多种CNN模型的性能 研究在受控的温室条件下进行,虽然模拟了田间变异性,但与真实复杂田间环境的完全一致性仍有待验证 开发基于深度学习的杂草图像分类方法,以支持精准农业中的早期杂草检测和病害预防 与Impatiens Necrotic Spot Virus (INSV)相关的两种杂草:Sonchus oleraceus (一年生苦苣菜) 和 Malva parviflora (小花锦葵) 计算机视觉 植物病害 图像采集与数据增强 CNN RGB图像 未明确说明具体样本数量,但提及使用了十次独立分层数据分割进行训练 未明确说明 ResNet-50, ResNet-101, DenseNet-121 准确率, Cohen's Kappa, F1-score, AUC NA
1974 2026-01-06
Diagnostic accuracy of traditional and deep learning methods for detecting depression based on speech features: a systematic review and meta-analysis
2025-Nov-24, BMC psychiatry IF:3.4Q2
系统综述与荟萃分析 本文通过系统综述和荟萃分析,比较了传统机器学习与深度学习方法在基于语音特征检测抑郁症方面的诊断准确性 首次系统性地比较了传统机器学习与深度学习模型在基于语音特征检测抑郁症方面的诊断准确性,并考察了样本量、验证策略、语言和诊断标准等亚组效应 纳入研究存在异质性,且可能存在发表偏倚,部分亚组分析样本量较小 评估和比较传统机器学习与深度学习模型利用语音特征检测抑郁症的诊断准确性 临床诊断为抑郁症的患者和健康对照者 自然语言处理 抑郁症 NA 传统机器学习, 深度学习 语音特征 25项研究(9项TML,16项DL) NA NA 灵敏度, 特异性, AUC NA
1975 2026-01-06
Evaluation of Deep Learning Convolutional Neural Networks for Classification of Carcinoma Ex Pleomorphic Adenoma and Pleomorphic Adenoma in Whole-Slide Images
2025-Nov-10, Head and neck pathology
研究论文 本研究评估了多种卷积神经网络架构在全玻片图像中区分唾液腺肿瘤(多形性腺瘤与癌在多形性腺瘤中)的分类性能 首次系统比较了八种不同的CNN模型(包括ResNet50、DenseNet121等)在唾液腺肿瘤全玻片图像分类任务中的表现,并识别出ResNet50和DenseNet121为最优模型 研究样本量相对较小(107张全玻片图像),数据集需要进一步扩展以提升泛化能力,且未结合临床和影像学数据 评估深度学习卷积神经网络在唾液腺肿瘤病理图像分类中的性能 唾液腺肿瘤的全玻片图像,具体包括多形性腺瘤和癌在多形性腺瘤 数字病理学 唾液腺肿瘤 苏木精-伊红染色全玻片成像 CNN 图像 107张全玻片图像,来自83名患者(41例多形性腺瘤,42例癌在多形性腺瘤),生成955,583个图像块 NA ResNet50, InceptionV3, VGG16, Xception, MobileNet, DenseNet121, EfficientNetB0, EfficientNetV2B0 精确度, 灵敏度, 特异性, 平衡准确度, F1分数, AUC NA
1976 2026-01-06
Lung ultrasound and community-acquired pneumonia: from complementary tool to clinical game-changer
2025-Nov, Respiratory medicine and research IF:2.2Q3
综述 本文综述了肺部超声在社区获得性肺炎诊断和管理中的变革性作用,强调了其在准确性、可及性和临床应用方面的优势 肺部超声作为一种无辐射、成本效益高的床边工具,在诊断社区获得性肺炎方面展现出超越传统胸部X光的敏感性,并支持动态监测、预后评分和治疗决策,特别是在COVID-19大流行期间的应用证明了其有效性 肺部超声存在操作者依赖性,对深部病变的穿透性有限,尽管人工智能和手持设备等技术进步正在缓解这些限制 评估肺部超声在社区获得性肺炎诊断和管理中的临床价值和应用前景 社区获得性肺炎患者,特别是急诊科、重症监护室、儿科、老年人群以及资源有限环境中的患者 数字病理学 肺癌 肺部超声 深度学习模型 图像 NA NA NA 敏感性, 特异性, 诊断准确率 NA
1977 2026-01-06
Quantitative Assessment of Facial Paralysis Using Dynamic 3D Photogrammetry and Deep Learning: A Hybrid Approach Integrating Expert Consensus
2025-May-22, Sensors (Basel, Switzerland)
研究论文 本文提出了一种结合动态3D摄影测量点云与专家共识的深度学习方法来客观量化面瘫严重程度 创新点在于将动态3D面部运动点云与专家共识评分相结合,使用PointNet网络进行面瘫严重程度的量化评估 NA 客观量化面瘫的严重程度 面瘫患者的面部运动 计算机视觉 面瘫 动态3D摄影测量成像系统 深度学习 3D点云 NA NA PointNet 准确率 NA
1978 2026-01-06
Artificial Intelligence in Natural Product Drug Discovery: Current Applications and Future Perspectives
2025-Feb-27, Journal of medicinal chemistry IF:6.8Q1
综述 本文综述了人工智能在天然产物药物发现中的当前应用与未来前景 整合人工智能(特别是机器学习和深度学习)分析天然产物数据,利用生成式AI进行数据合成,以加速药物发现过程 未具体说明数据规模或模型性能的局限性 加速天然产物药物发现过程,提升数据分析和预测建模能力 天然产物及其相关的生物活性化合物 机器学习 NA NA 机器学习, 深度学习 生物数据, 化学数据 NA NA NA NA NA
1979 2026-01-06
A systematic review of automated prediction of sudden cardiac death using ECG signals
2025-Jan-23, Physiological measurement IF:2.3Q3
综述 本文对2011年至2023年间利用ECG信号自动预测心源性猝死的研究进行了系统性综述 系统梳理了机器学习和深度学习在心源性猝死自动预测中的应用,并强调了当前方法的局限性和未来研究方向 现有模型大多依赖小规模数据库,且主要使用ECG和HRV信号,忽略了其他生理信号的潜在贡献,限制了其在真实世界场景中的适用性 综述并分析用于心源性猝死自动预测的机器学习和深度学习模型 心源性猝死预测研究及相关算法模型 机器学习 心血管疾病 ECG信号分析,HRV信号分析 K近邻,支持向量机,决策树,随机森林,朴素贝叶斯,卷积神经网络 生理信号(ECG,HRV) NA NA NA 准确率 NA
1980 2026-01-06
Artificial intelligence in Glioblastoma Diagnostics: Integrating MRI, histopathology, and molecular profiling
2025, Cancer treatment and research communications
综述 本文综述了人工智能在胶质母细胞瘤诊断中整合MRI、组织病理学和分子谱分析的应用与挑战 系统性地整合了AI在脑肿瘤诊断中的多模态数据(如MRI、fMRI、PET)应用,并强调了与放射组学、多模态融合、迁移学习及分子谱分析的结合 研究存在异质性,导致仅能进行叙述性综合;外部泛化性有限,且缺乏前瞻性、多中心验证 评估人工智能在提高脑肿瘤(特别是胶质瘤)诊断精度和效率方面的潜力 脑肿瘤诊断研究,重点关注胶质瘤 数字病理学 胶质母细胞瘤 MRI, fMRI, PET, 放射组学, 分子谱分析 CNN 图像 NA NA NA NA NA
回到顶部