深度学习在生物医药领域中的应用

本数据库通过收集和整理最新科研文献信息而得,供了解领域前沿进展之用。数据源自 PubMed Data ,每日自动更新,已收录文献数量参见 统计表格。表格内容由 GPT 自动整理,可能存在错误或遗漏,请使用时务必注意核实!

如有建议或合作意向,欢迎联系 linlin.yan(AT)bioinfo.app 或 微信 yanlinlin82。本项目遵循 MIT 许可 发布,欢迎下载 源码 自行修改使用。如觉得不错,还请不吝 给我打赏,你的支持是我继续创新的重要动力!

Sample Image
添加微信请说明来意
Sample Image
微信赞赏

除通过在线浏览外,为方便用户离线查阅,本站也提供 付费下载(定价10元)。之所以考虑收费,是因为批量扫描这些文献并整理也是有一定成本的,还请理解并多多支持。本站数据会持续更新,而仅需一次付费,未来就可以随时重新下载到最新版本数据。

当前筛选条件: [分区不过滤] [IF不过滤] [发表日期不过滤] [清除筛选条件]
当前共找到 26172 篇文献,本页显示第 1961 - 1980 篇。
序号 推送日期 文章 类型 简述 创新点 不足 研究目的 研究对象 领域 病种 技术 模型 数据类型 样本量
1961 2025-05-24
TFTL: A Task-Free Transfer Learning Strategy for EEG-Based Cross-Subject and Cross-Dataset Motor Imagery BCI
2025-02, IEEE transactions on bio-medical engineering
研究论文 提出一种无任务迁移学习策略(TFTL),用于基于EEG的跨被试和跨数据集运动想象脑机接口(MI-BCI),以减少校准时间并实现多中心数据联合建模 提出TFTL策略,通过数据对齐、共享特征提取器和特定分类器的联合优化,实现跨数据集知识迁移,并仅使用目标被试的静息数据进行模型构建,实现无任务校准 未明确提及具体局限性,但跨数据集和跨被试的泛化性能可能受数据异质性影响 解决MI-BCI中因长时间校准和EEG数据不足导致的性能瓶颈,推动其从实验室走向临床应用 运动想象脑机接口(MI-BCI)系统 脑机接口 神经康复 EEG信号处理与迁移学习 ShallowConvNet, EEGNet, TCNet-Fusion EEG信号 五个数据集(BCIC IV Dataset 2a, Dataset 1, Physionet MI, Dreyer 2023, OpenBMI),具体样本量未明确
1962 2025-05-24
A Serial MRI-based Deep Learning Model to Predict Survival in Patients with Locoregionally Advanced Nasopharyngeal Carcinoma
2025-Feb, Radiology. Artificial intelligence
research paper 开发并评估了一个基于深度学习的预后模型,用于通过诱导化疗前后的连续MRI预测局部晚期鼻咽癌患者的生存率 使用图卷积神经网络开发了一个结合放射组学和临床因素的预后模型,显著提高了预测疾病无进展生存期的准确性 研究为回顾性设计,可能存在选择偏差,且样本量虽大但来自特定时间段 预测局部晚期鼻咽癌患者的生存率并指导风险适应性治疗 1039名局部晚期鼻咽癌患者(779名男性和260名女性,平均年龄44岁±11) digital pathology nasopharyngeal carcinoma MRI graph convolutional neural networks MRI图像 1039名患者(2011年12月至2016年1月诊断)
1963 2025-05-24
NETest and Gastro-Entero-Pancreatic Neuroendocrine Tumors: Still Far from Routine Clinical Application? A Systematic Review
2025-Jan-27, Genes IF:2.8Q2
系统性综述 本文系统性综述了NETest在胃肠胰神经内分泌肿瘤(GEP-NETs)诊断和预后分层中的应用 NETest结合实时PCR和深度学习策略,专门识别具有神经内分泌基因型的肿瘤 NETest在某些研究中显示出低特异性,主要归因于与其他胃肠道恶性肿瘤的干扰 评估NETest在GEP-NETs诊断和预后中的临床应用价值 胃肠胰神经内分泌肿瘤(GEP-NETs) 数字病理学 胃肠胰神经内分泌肿瘤 实时PCR, 深度学习 NA 分子数据 五项研究评估诊断作用,九项研究评估预后价值
1964 2025-05-24
Predicting drug and target interaction with dilated reparameterize convolution
2025-Jan-20, Scientific reports IF:3.8Q1
research paper 该研究提出了一种名为Rep-ConvDTI的新框架,用于预测药物与靶点的相互作用,通过大核卷积块和门控注意力机制提高预测性能 设计了用于提取大规模序列信息的大核卷积块,并引入了重参数化方法帮助大核卷积捕捉小尺度信息,同时开发了门控注意力机制以更高效地表征药物与靶点的相互作用 NA 解决药物靶点相互作用预测这一药物研究中的关键挑战 药物与靶点的相互作用 machine learning NA deep learning CNN sequence 三个基准数据集
1965 2025-05-24
Ultrasound-Based Deep Learning Radiomics Nomogram for Tumor and Axillary Lymph Node Status Prediction After Neoadjuvant Chemotherapy
2025-Jan, Academic radiology IF:3.8Q1
研究论文 探讨基于超声的深度学习放射组学列线图(DLRN)在预测乳腺癌患者新辅助化疗后肿瘤状态和腋窝淋巴结转移中的可行性 结合临床特征、放射组学和深度迁移学习特征,构建融合算法预测模型,并验证其在生存分析中的有效性 研究样本量较小(243例),且为回顾性研究,可能存在选择偏倚 预测乳腺癌患者新辅助化疗后肿瘤状态和腋窝淋巴结转移,并验证融合算法的临床有效性 乳腺癌患者 数字病理 乳腺癌 深度学习放射组学、Cox回归模型 DLRN(深度学习放射组学列线图) 超声图像 243例接受新辅助化疗的乳腺癌患者
1966 2025-05-24
Integrated Deep Learning Model for the Detection, Segmentation, and Morphologic Analysis of Intracranial Aneurysms Using CT Angiography
2025-Jan, Radiology. Artificial intelligence
research paper 开发了一种基于CT血管造影数据的深度学习模型,用于未破裂颅内动脉瘤的形态学测量,并在多中心数据集上验证其性能 提出了一种集成深度学习模型,能够同时进行未破裂颅内动脉瘤的检测、分割和形态学测量,并验证了其在多中心数据集上的性能 研究为回顾性设计,可能受到选择偏倚的影响 开发并验证一种用于未破裂颅内动脉瘤形态学测量的深度学习模型 未破裂颅内动脉瘤患者和健康对照者 digital pathology intracranial aneurysms CT angiography nnU-Net image 训练数据集包括1182名未破裂颅内动脉瘤患者和578名健康对照者,多中心外部测试集包括535名未破裂颅内动脉瘤患者
1967 2025-05-24
Deep Learning and Multidisciplinary Imaging in Pediatric Surgical Oncology: A Scoping Review
2025-Jan, Cancer medicine IF:2.9Q2
综述 本文综述了深度学习在儿科外科肿瘤学多学科成像中的应用 提供了深度学习在儿科外科肿瘤学多学科成像领域的全面概述,并指出了未来发展方向 由于纳入研究的异质性,无法对研究性能做出一般性陈述 探讨深度学习在儿科外科肿瘤学多学科成像中的应用 儿科实体肿瘤 数字病理学 儿科肿瘤 深度学习 NA 医学影像 36篇文章(放射学22篇,病理学9篇,其他影像诊断5篇)
1968 2025-05-24
Prompting large language models to extract chemical‒disease relation precisely and comprehensively at the document level: an evaluation study
2025, PloS one IF:2.9Q1
研究论文 本研究评估了三种大型语言模型(GPT3.5、GPT4.0和Claude-opus)在文档级化学-疾病关系提取中的精确和全面提取能力 设计了基于提示工程的六种精确提取和五种全面提取工作流程,分析了大型语言模型在提取过程中的特性、内容偏见及错误特征 大型语言模型在提取过程中表现出一定的顽固性,提示工程策略效果有限,且存在对生物医学文本隐含含义的误解 评估大型语言模型在文档级化学-疾病关系提取中的能力 化学-疾病关系 自然语言处理 NA 提示工程 GPT3.5, GPT4.0, Claude-opus 文本 自建数据集
1969 2025-05-24
Continuous three-dimensional transesophageal echocardiography and deep learning for perioperative monitoring of left ventricular longitudinal function
2025-Jan, European heart journal. Imaging methods and practice
研究论文 本研究开发了一种结合3D经食管超声心动图和深度学习的自动测量二尖瓣环平面收缩期位移(MAPSE)的新方法3D autoMAPSE,用于围手术期患者左心室功能的连续监测 结合3D经食管超声心动图和深度学习技术,首次实现了围手术期左心室功能的连续自动监测 研究样本量较小(50例),且仅在心脏手术后重症监护患者中进行验证 开发一种连续监测左心室功能的方法以改善心肺管理 心脏手术后成人重症监护患者 数字病理 心血管疾病 3D经食管超声心动图 深度学习 3D图像 50例心脏手术后成人重症监护患者
1970 2025-05-24
Multimodal AI diagnostic system for neuromyelitis optica based on ultrawide-field fundus photography
2025, Frontiers in medicine IF:3.1Q1
research paper 开发了一种基于超广角眼底摄影的多模态AI诊断系统,用于预测视神经脊髓炎的发病和阶段 首次提出结合超广角眼底摄影和临床检查数据的多模态AI模型用于视神经脊髓炎的诊断 研究样本量相对有限,需要进一步的外部验证 开发用于视神经脊髓炎诊断和预测的AI模型 视神经脊髓炎患者和非患者的眼底图像及临床数据 digital pathology neuromyelitis optica deep learning multimodal AI model image, clinical reports 330 eyes from 285 NMO patients and 1,288 eyes from 770 non-NMO participants
1971 2025-05-24
Multimodal LLMs for retinal disease diagnosis via OCT: few-shot versus single-shot learning
2025 Jan-Dec, Therapeutic advances in ophthalmology IF:2.3Q2
research paper 评估多模态大型语言模型(LLMs)在视网膜疾病诊断中的表现,比较单次学习和少次学习的准确性 首次评估GPT-4o和Claude Sonnet 3.5在视网膜疾病诊断中的表现,并比较单次学习和少次学习的差异 模型的诊断准确性尚未达到深度学习文献中报道的水平 评估多模态LLMs在视网膜疾病诊断中的表现 光学相干断层扫描(OCT)图像 digital pathology retinal disease OCT GPT-4o, Claude Sonnet 3.5 image 3088 models' API calls from two public OCT datasets (OCTID, OCTDL)
1972 2025-05-24
Integration of magnetic resonance imaging and deep learning for prostate cancer detection: a systematic review
2025, American journal of clinical and experimental urology IF:1.5Q3
systematic review 该研究评估了深度学习与磁共振成像结合在前列腺癌检测和分层中提高诊断性能的总体影响 深度学习在前列腺癌的快速、敏感、特异和稳健检测及分层中显示出显著进展 过渡区前列腺癌的检测和分层是研究最少的领域 评估深度学习和磁共振成像结合在前列腺癌诊断中的效果 前列腺癌 digital pathology prostate cancer MRI, T2-weighted imaging (T2WI), apparent diffusion coefficient (ADC), diffusion-weighted imaging (DWI) DL-based architectures image 17,954 participants from 29 articles
1973 2025-05-24
Data source and utilization of artificial intelligence technologies in vascular surgery-a scoping review
2025, Frontiers in cardiovascular medicine IF:2.8Q2
综述 本文对血管外科中人工智能技术的数据来源和应用进行了范围审查 重点分析了自然语言处理在血管外科中的应用,并确定了目标期刊受众 自然语言处理在血管外科中的应用比例较低,存在未充分利用的情况 确定用于开发基于人工智能算法的数据来源,并评估其在血管外科不同领域的应用 血管外科相关研究 自然语言处理 心血管疾病 自然语言处理(NLP)、机器学习(ML)、深度学习(DL) NA 图像、医疗记录、临床参数 342篇同行评审文章
1974 2025-05-24
Accurate de novo design of high-affinity protein binding macrocycles using deep learning
2024-Nov-18, bioRxiv : the preprint server for biology
研究论文 本文介绍了一种基于深度学习的去噪扩散管道RFpeptides,用于设计针对特定蛋白质靶点的大环肽结合物 首次提出了一种稳健的大环肽结合物设计方法,无需依赖大规模筛选方法,且能精确控制结合模式 研究中仅测试了四种蛋白质靶点,样本量较小,且对某些靶点(如RbtA)缺乏实验确定的结构 开发一种高效、定制化的大环肽结合物设计方法,用于诊断和治疗应用 大环肽结合物及其与蛋白质靶点的相互作用 机器学习 NA 去噪扩散模型 深度学习 蛋白质序列和结构数据 针对四种蛋白质靶点各设计并测试了20个或更少的大环肽结合物
1975 2025-05-24
An explainable longitudinal multi-modal fusion model for predicting neoadjuvant therapy response in women with breast cancer
2024-11-07, Nature communications IF:14.7Q1
research paper 提出了一种可解释的纵向多模态融合模型MRP,用于预测乳腺癌患者的新辅助治疗反应 MRP系统通过跨模态知识挖掘和时间信息嵌入策略处理缺失模态,减少不同NAT设置的影响,提高了临床适用性 NA 预测乳腺癌患者的新辅助治疗反应,提高临床决策的准确性 乳腺癌患者 digital pathology breast cancer deep learning multi-modal fusion model multi-modal image 多中心研究和跨国读者研究验证
1976 2025-05-24
PACT-3D, a deep learning algorithm for pneumoperitoneum detection in abdominal CT scans
2024-11-07, Nature communications IF:14.7Q1
研究论文 开发并验证了一种深度学习模型PACT-3D,用于在腹部CT扫描中检测气腹 提出了一种新的深度学习算法PACT-3D,专门用于检测气腹,并在不同数据集上验证了其高敏感性和特异性 在检测少量游离气体(总体积<10ml)的情况下敏感性较低 提高气腹的检测准确性和速度,以优化急诊护理中的诊断和治疗流程 腹部CT扫描图像 计算机视觉 气腹 深度学习 深度学习模型 图像 回顾性测试集14,039次扫描,前瞻性测试集6,351次扫描,外部验证集480次扫描
1977 2025-05-24
Deep learning for rapid analysis of cell divisions in vivo during epithelial morphogenesis and repair
2024-Sep-23, eLife IF:6.4Q1
research paper 该研究开发了一种深度学习流程,用于自动识别和分析上皮组织中细胞分裂的动态特征 利用深度学习自动检测和量化细胞分裂的时空同步性和方向性,为组织生长和修复研究提供了新工具 研究仅针对果蝇蛹翼上皮组织,可能不适用于其他组织类型 研究细胞分裂在上皮组织形态发生和修复过程中的动态特征 果蝇蛹翼上皮组织中的细胞分裂事件 digital pathology NA time-lapse microscopy deep learning pipeline video 果蝇蛹翼上皮组织的时间序列影像数据
1978 2025-05-24
An Exaggeration? Reality?: Can ChatGPT Be Used in Neonatal Nursing?
2024 Apr-Jun 01, The Journal of perinatal & neonatal nursing IF:1.5Q2
research paper 本文探讨了ChatGPT在新生儿护理中的应用潜力及其挑战 探讨了ChatGPT在新生儿护理中的创新应用,如疼痛评估、喂养过程和患者状态判定 需要严格验证数据的准确性,并对缺乏科学依据的结果保持怀疑态度 评估ChatGPT在新生儿护理中的应用效果和安全性 新生儿护理中的AI应用,特别是ChatGPT natural language processing NA 自然语言处理 ChatGPT text NA
1979 2025-05-24
Differentiating molecular etiologies of Angelman syndrome through facial phenotyping using deep learning
2020-09, American journal of medical genetics. Part A
研究论文 本研究利用深度学习技术DeepGestalt通过面部表型分析区分Angelman综合征的分子病因 首次应用DeepGestalt系统分析Angelman综合征不同分子亚型之间的面部表型差异 样本年龄跨度较大(10个月至32岁),可能影响表型分析的准确性 探索面部识别系统在区分Angelman综合征分子亚型中的应用价值 261名Angelman综合征患者 数字病理学 Angelman综合征 深度学习面部分析 DeepGestalt 图像 261名患者(年龄10个月至32岁)
1980 2025-05-23
ConnectomeAE: Multimodal brain connectome-based dual-branch autoencoder and its application in the diagnosis of brain diseases
2025-Jul, Computer methods and programs in biomedicine IF:4.9Q1
研究论文 提出一种基于多模态脑连接组的双分支自编码器ConnectomeAE,用于整合多模态脑连接组信息和区域放射组学特征,以增强脑疾病的诊断 通过双分支自编码器分别学习节点特征和连接特征,整合多模态脑连接组信息和区域放射组学特征,提高了脑疾病诊断的适应性和准确性 未提及具体的数据集规模限制或模型在其他脑疾病上的泛化能力 探索多模态脑网络之间的依赖关系,整合节点特征以增强脑疾病诊断 自闭症谱系障碍和阿尔茨海默病 数字病理学 脑疾病 结构磁共振成像(MRI)和功能磁共振成像(fMRI) 双分支自编码器(ConnectomeAE) 图像 两个公开数据集,具体样本量未提及
回到顶部