本数据库通过收集和整理最新科研文献信息而得,供了解领域前沿进展之用。数据源自 PubMed Data ,每日自动更新,已收录文献数量参见 统计表格。表格内容由 GPT 自动整理,可能存在错误或遗漏,请使用时务必注意核实!
如有建议或合作意向,欢迎联系 linlin.yan(AT)bioinfo.app 或 微信 yanlinlin82。本项目遵循 MIT 许可 发布,欢迎下载 源码 自行修改使用。如觉得不错,还请不吝 给我打赏,你的支持是我继续创新的重要动力!
除通过在线浏览外,为方便用户离线查阅,本站也提供 付费下载(定价10元)。之所以考虑收费,是因为批量扫描这些文献并整理也是有一定成本的,还请理解并多多支持。本站数据会持续更新,而仅需一次付费,未来就可以随时重新下载到最新版本数据。
序号 | 推送日期 | 文章 | 类型 | 简述 | 创新点 | 不足 | 研究目的 | 研究对象 | 领域 | 病种 | 技术 | 模型 | 数据类型 | 样本量 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
19801 | 2024-08-09 |
Deep learning in oral cancer- a systematic review
2024-Feb-10, BMC oral health
IF:2.6Q1
DOI:10.1186/s12903-024-03993-5
PMID:38341571
|
综述 | 本文是一篇关于深度学习在口腔癌诊断和预后预测中应用的系统综述 | NA | NA | 旨在回顾深度学习在口腔癌诊断和预后预测中的研究 | 口腔癌的诊断和预后预测 | 机器学习 | 口腔癌 | 深度学习 | CNN | NA | 54项合格研究,包括51项诊断研究和3项预后预测研究 |
19802 | 2024-08-09 |
Could the underlying biological basis of prognostic radiomics and deep learning signatures be explored in patients with lung cancer? A systematic review
2024-Feb, European journal of radiology
IF:3.2Q1
DOI:10.1016/j.ejrad.2024.111314
PMID:38244306
|
综述 | 本文综述了预测性放射组学和深度学习特征在肺癌患者中的潜在生物学基础,并评估了现有研究的质量 | NA | 纳入的研究总体上存在高偏倚风险 | 总结肺癌患者中预测性放射组学和深度学习特征的潜在生物学关联,并评估研究质量 | 肺癌患者的预测性放射组学和深度学习特征的生物学基础 | 数字病理学 | 肺癌 | 基因测序 | 机器学习 | 图像 | 7,338名患者 |
19803 | 2024-08-09 |
Deep learning in MRI-guided radiation therapy: A systematic review
2024-Feb, Journal of applied clinical medical physics
IF:2.0Q3
DOI:10.1002/acm2.14155
PMID:37712893
|
综述 | 本文系统回顾了197项关于MRI引导放疗和深度学习技术的研究,分类讨论了图像分割、图像合成、放射组学和实时MRI等领域的进展 | 强调了深度学习在多模态、视觉变换器和扩散模型等新趋势中的应用 | NA | 探讨深度学习技术在MRI引导放疗中的临床重要性和当前挑战 | MRI引导放疗中的图像分割、图像合成、放射组学和实时MRI | 机器学习 | NA | 深度学习 | 视觉变换器、扩散模型 | 图像 | 197项研究 |
19804 | 2024-08-09 |
A Systematic Review and Identification of the Challenges of Deep Learning Techniques for Undersampled Magnetic Resonance Image Reconstruction
2024-Jan-24, Sensors (Basel, Switzerland)
DOI:10.3390/s24030753
PMID:38339469
|
综述 | 本文综述了深度学习技术在欠采样磁共振图像重建中的应用及其面临的挑战 | 深度学习方法通过神经网络自动学习特征和表示,相比传统方法在图像重建中表现出更好的性能 | 深度学习技术在磁共振图像重建中存在对大型标记数据集的需求、过拟合风险以及模型训练复杂性等局限 | 旨在描述深度学习设计随时间的变化,并评估数据预处理和后处理方法,以及探讨网络训练策略 | 深度学习在磁共振图像重建中的应用 | 机器学习 | NA | 深度学习 | 神经网络 | 图像 | 使用公开的磁共振图像数据集 |
19805 | 2024-08-09 |
Enhancing chemical synthesis: a two-stage deep neural network for predicting feasible reaction conditions
2024-Jan-24, Journal of cheminformatics
IF:7.1Q1
DOI:10.1186/s13321-024-00805-4
PMID:38268009
|
研究论文 | 本文介绍了一种创新的深度学习方法,用于预测化学反应的合适试剂、溶剂和反应温度 | 结合多标签分类模型和排序模型,提供基于预期产品产量的相关性分数的定制反应条件推荐;通过硬负样本采样技术处理不利反应条件的有限数据问题 | 模型在不利反应条件的数据有限情况下可能存在改进空间 | 提高化学合成规划中反应条件的准确推荐 | 化学反应的试剂、溶剂和反应温度 | 机器学习 | NA | 深度神经网络 | 深度神经网络 | 文本 | NA |
19806 | 2024-08-09 |
Neural Computation-Based Methods for the Early Diagnosis and Prognosis of Alzheimer's Disease Not Using Neuroimaging Biomarkers: A Systematic Review
2024, Journal of Alzheimer's disease : JAD
DOI:10.3233/JAD-231271
PMID:38489188
|
综述 | 本文综述了基于神经计算方法用于阿尔茨海默病早期诊断和预后,但不使用神经影像生物标志物的最新研究 | 介绍了卷积神经网络在过去十年的应用及其在非神经影像数据上的优异结果 | NA | 旨在展示关于阿尔茨海默病及其早期阶段(主要是轻度认知障碍)的自动诊断和预后的最新研究,并预测该领域研究的未来变化 | 阿尔茨海默病及其早期阶段 | 机器学习 | 老年病 | 人工神经网络(ANNs),包括深度学习 | 卷积神经网络(CNNs),循环神经网络,转换器 | 非脑信号或神经影像技术数据 | 42篇文章 |
19807 | 2024-08-09 |
Auto-Spikformer: Spikformer architecture search
2024, Frontiers in neuroscience
IF:3.2Q2
DOI:10.3389/fnins.2024.1372257
PMID:39108310
|
研究论文 | 本文提出了一种名为Auto-Spikformer的一次性脉冲Transformer架构搜索方法,旨在减少Spiking Neural Networks(SNNs)中的能量消耗 | Auto-Spikformer通过扩展搜索空间包括Transformer架构和SNN内部参数,并采用权重纠缠、进化搜索和离散脉冲参数搜索(DSPS)方法,实现了子网性能的提升 | NA | 研究如何通过架构搜索方法减少Spiking Neural Networks中的能量消耗 | Spiking Neural Networks(SNNs)及其架构 | 机器学习 | NA | 进化搜索、离散脉冲参数搜索(DSPS) | Spikformer | NA | NA |
19808 | 2024-08-09 |
Improving image quality and in-stent restenosis diagnosis with high-resolution "double-low" coronary CT angiography in patients after percutaneous coronary intervention
2024, Frontiers in cardiovascular medicine
IF:2.8Q2
DOI:10.3389/fcvm.2024.1330824
PMID:39108672
|
研究论文 | 本研究旨在探讨高分辨率、低剂量的冠状CT血管造影(CCTA)结合深度学习图像重建(DLIR)和第二代运动校正算法(SSF2)的图像质量及其对支架内再狭窄(ISR)的诊断准确性 | 采用高分辨率、低剂量的CCTA结合DLIR和SSF2算法,相比于标准剂量的CCTA和ASIR-V及SSF1算法,显著提高了图像质量和诊断性能 | NA | 研究高分辨率、低剂量CCTA的图像质量和诊断支架内再狭窄的准确性 | 接受经皮冠状动脉介入治疗(PCI)后疑似支架内再狭窄的患者 | 数字病理学 | 心血管疾病 | 冠状CT血管造影(CCTA) | 深度学习图像重建(DLIR) | 图像 | 105名患者,分为低剂量组(60名)和高剂量组(45名) |
19809 | 2024-08-09 |
A robust ensemble deep learning framework for accurate diagnoses of tuberculosis from chest radiographs
2024, Frontiers in medicine
IF:3.1Q1
DOI:10.3389/fmed.2024.1391184
PMID:39109222
|
研究论文 | 本研究提出了一种基于胸部X光片的结核病诊断的鲁棒集成深度学习框架,包含43个不同模型,用于识别活动性结核病例及其临床亚型分类 | 该框架采用多种特征提取器和三种融合策略(投票、基于注意力或串联方法),在融合阶段进行最终分类,具有自我修正能力,提高了亚型识别的准确性 | 尽管模型在有限的数据集上表现良好,但数据集的大小可能限制了模型的泛化能力 | 提高结核病诊断的准确性,优化资源分配,支持临床决策 | 活动性结核病例及其临床亚型 | 机器学习 | 结核病 | 深度学习 | 集成模型 | 图像 | 包含915名活动性结核病患者和1276名健康对照者的去标识化数据集 |
19810 | 2024-08-09 |
From outputs to insights: a survey of rationalization approaches for explainable text classification
2024, Frontiers in artificial intelligence
IF:3.0Q2
DOI:10.3389/frai.2024.1363531
PMID:39109323
|
综述 | 本文综述了文本分类中用于解释性的合理化方法的进展 | 本文首次全面概述了文本分类中合理化方法的发展,包括提取和抽象合理化的技术,以及评估机器生成合理化的指标 | NA | 探讨和促进文本分类中解释性方法的未来发展 | 文本分类中的合理化方法 | 自然语言处理 | NA | NA | NA | 文本 | NA |
19811 | 2024-08-09 |
LeafAI: query generator for clinical cohort discovery rivaling a human programmer
2023-11-17, Journal of the American Medical Informatics Association : JAMIA
IF:4.7Q1
DOI:10.1093/jamia/ocad149
PMID:37550244
|
研究论文 | 本文介绍了一种名为LeafAI的系统,该系统能够生成数据模型无关的查询,并提供复杂的临床试验资格标准的逻辑推理能力 | LeafAI引入了一种新的方法,使用UMLS概念对数据库模式元素进行标记,以实现数据模型无关的查询创建 | NA | 开发一种能够生成数据模型无关查询并提供复杂临床试验资格标准逻辑推理能力的系统 | 临床数据库中的患者识别和临床试验资格标准的查询生成 | 自然语言处理 | NA | 混合深度学习和基于规则的模块 | NA | 文本 | 8个临床试验中的27,225名合格患者 |
19812 | 2024-08-09 |
Automated Segmentation of Optical Coherence Tomography Images of the Human Tympanic Membrane Using Deep Learning
2023-Sep, Algorithms
IF:1.8Q2
DOI:10.3390/a16090445
PMID:39104565
|
研究论文 | 本文利用深度学习算法自动分割人耳鼓膜的光学相干断层扫描(OCT)图像 | 开发了一种基于卷积神经网络的深度学习算法,能够准确识别并分割耳鼓膜,提高图像可视化效果 | 未提及具体限制 | 改进数据分析和图像处理,使OCT医学影像成为耳鼻喉科领域便捷且可行的诊断工具 | 人耳鼓膜的OCT图像 | 计算机视觉 | NA | 光学相干断层扫描(OCT) | 卷积神经网络(CNN) | 图像 | 3D体积的人耳鼓膜图像 |
19813 | 2024-08-08 |
Corrigendum to 'OPUS-Rota4: a gradient-based protein side-chain modeling framework assisted by deep learning-based predictors'
2022-09-20, Briefings in bioinformatics
IF:6.8Q1
DOI:10.1093/bib/bbac189
PMID:35580857
|
NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
19814 | 2024-08-09 |
DeepMapi: a Fully Automatic Registration Method for Mesoscopic Optical Brain Images Using Convolutional Neural Networks
2021-04, Neuroinformatics
IF:2.7Q3
DOI:10.1007/s12021-020-09483-7
PMID:32754778
|
研究论文 | 提出了一种基于深度学习的全自动注册方法DeepMapi,用于将介观光学脑图像与脑图谱对齐 | 使用自反馈策略处理不平衡训练集问题,并采用双层级网络捕捉大范围和小范围的形变 | NA | 开发一种全自动的脑图像注册方法,以提高处理复杂神经解剖结构的效率 | 介观光学脑图像的自动注册 | 计算机视觉 | NA | 卷积神经网络 | CNN | 图像 | 包括光学和MRI图像的一组基准图像 |
19815 | 2024-08-09 |
Evaluation of lung involvement in COVID-19 pneumonia based on ultrasound images
2021-Mar-20, Biomedical engineering online
IF:2.9Q3
DOI:10.1186/s12938-021-00863-x
PMID:33743707
|
研究论文 | 本研究旨在基于深度学习建立一个评估COVID-19肺炎肺部受累程度的模型 | 提出了一种结合多模态通道和感受野注意网络与ResNeXt的新型网络(MCRFNet),用于自动融合浅层特征并确定不同通道及其相应领域的重要性 | NA | 建立一个基于深度学习的肺部受累评估模型 | COVID-19肺炎患者的肺部超声图像 | 计算机视觉 | COVID-19 | 深度学习 | MCRFNet | 超声图像 | 104名患者的多中心和多模态超声数据 |
19816 | 2024-08-09 |
Stacked LSTM based deep recurrent neural network with kalman smoothing for blood glucose prediction
2021-03-16, BMC medical informatics and decision making
IF:3.3Q2
DOI:10.1186/s12911-021-01462-5
PMID:33726723
|
研究论文 | 本文提出了一种基于堆叠长短期记忆(LSTM)的深度循环神经网络模型,结合卡尔曼平滑技术,用于预测血糖水平,特别考虑了传感器故障问题 | 本文创新地使用了堆叠LSTM的深度循环神经网络模型,并结合卡尔曼平滑技术来校正由于传感器错误导致的CGM读数不准确问题 | NA | 旨在提高血糖预测的准确性,从而改善人工胰腺和胰岛素输注系统在1型糖尿病管理中的性能 | 1型糖尿病患者的血糖管理 | 机器学习 | 糖尿病 | 卡尔曼平滑技术 | 堆叠LSTM的深度循环神经网络 | 生理信息数据 | 包含六名不同患者八周数据的OhioT1DM(2018)数据集 |
19817 | 2024-08-09 |
Classification of Hemodynamics Scenarios from a Public Radar Dataset Using a Deep Learning Approach
2021-Mar-06, Sensors (Basel, Switzerland)
DOI:10.3390/s21051836
PMID:33800716
|
研究论文 | 本文研究了使用深度学习方法从公共雷达数据集中分类五种复杂血流动力学场景的可能性 | 本文展示了雷达传感技术在监测复杂血流动力学场景方面的潜力,超越了传统的心率和呼吸率监测 | NA | 探索使用非接触式传感器(如雷达)监测复杂血流动力学场景的可行性 | 五种复杂血流动力学场景(静息、模拟窒息、瓦尔萨尔瓦动作、倾斜台上的倾斜上和倾斜下) | 机器学习 | NA | 深度学习 | 神经网络 | 时间域和频率域数据 | 使用了公共雷达和接触输入信号的数据集 |
19818 | 2024-08-09 |
Using artificial intelligence to assist radiologists in distinguishing COVID-19 from other pulmonary infections
2021, Journal of X-ray science and technology
IF:1.7Q3
DOI:10.3233/XST-200735
PMID:33164982
|
研究论文 | 本研究开发了一种基于深度学习算法的AI模型,使用ResUNet网络,评估放射科医生在有无AI辅助下区分COVID-19与其他肺部感染的能力 | 本研究首次使用ResUNet网络的深度学习模型,显著提高了放射科医生在区分COVID-19与其他肺部感染的准确性和敏感性 | 研究仅使用了694个病例和111,066张CT扫描图像,样本量可能不足以完全代表所有病例 | 开发和验证一种AI模型,以提高放射科医生在CT扫描中区分COVID-19与其他肺部感染的能力 | COVID-19感染的肺炎患者与其他肺部感染患者 | 计算机视觉 | COVID-19 | 深度学习算法 | ResUNet | 图像 | 694个病例,包括118个COVID-19感染的肺炎病例和576个其他肺部感染病例 |
19819 | 2024-08-09 |
Deep Learning in the Detection and Diagnosis of COVID-19 Using Radiology Modalities: A Systematic Review
2021, Journal of healthcare engineering
DOI:10.1155/2021/6677314
PMID:33747419
|
综述 | 本文通过系统综述方法,探讨了利用深度学习模型在放射学模式下检测和诊断COVID-19的现状 | 深度学习模型提供了准确且高效的系统,显著提高了敏感性和特异性值 | NA | 旨在解决COVID-19早期检测和诊断的主要挑战,并提高诊断准确性 | COVID-19的放射学图像 | 机器学习 | COVID-19 | 深度学习 | 深度学习模型 | 图像 | 37篇文章作为研究样本 |
19820 | 2024-08-09 |
Comparison of machine learning and deep learning techniques in promoter prediction across diverse species
2021, PeerJ. Computer science
DOI:10.7717/peerj-cs.365
PMID:33817015
|
研究论文 | 本文比较了机器学习和深度学习技术在不同物种中预测基因启动子的效果 | 使用频率基础的标记化(FBT)进行数据预处理,减少了输入维度并缩短了训练时间,同时保持了分类的敏感性和特异性 | NA | 研究机器学习和深度学习模型在基因启动子预测中的应用 | 酵母、植物和人类的基因组序列 | 机器学习 | NA | 一维卷积神经网络(CNN)、长短期记忆(LSTM)和随机森林(RF)分类器 | CNN、LSTM、RF | 基因组序列 | 涉及酵母、植物和人类三种不同的真核生物 |