深度学习在生物医药领域的应用

本数据库通过收集和整理最新科研文献信息而得,供了解领域前沿进展之用。数据源自 PubMed Data ,每日自动更新(使用关键词“['deep learning']”过滤),已收录文献数量参见 统计表格。表格内容由 GPT 自动整理,可能存在错误或遗漏,请使用时务必注意核实!

如有建议或合作意向,欢迎联系 linlin.yan(AT)bioinfo.app 或 微信 yanlinlin82。本项目遵循 MIT 许可 发布,欢迎下载 源码 自行修改使用。如觉得不错,还请不吝 给我打赏,你的支持是我继续创新的重要动力!

Sample Image
添加微信请说明来意
Sample Image
微信赞赏

除通过在线浏览外,为方便用户离线查阅,本站也提供 付费下载(定价19.9元)。之所以考虑收费,是因为批量扫描这些文献并整理也是有一定成本的,还请理解并多多支持。本站数据会持续更新,而仅需一次付费,未来就可以随时重新下载到最新版本数据。

当前筛选条件: [分区不过滤] [IF不过滤] [发表日期不过滤] [清除筛选条件]
当前共找到 36434 篇文献,本页显示第 19821 - 19840 篇。
序号 推送日期 文章 类型 简述 创新点 不足 研究目的 研究对象 领域 病种 技术 模型 数据类型 样本量 算法框架 模型架构 性能指标 计算资源
19821 2025-03-06
PICASO Set Operator for Computational Nephropathology
2025-Mar-03, Kidney360 IF:3.2Q1
研究论文 本文介绍了一种名为PICASO的新型排列不变集合操作符,用于动态聚合病理学特征,并在两种肾病场景中进行了应用 PICASO是一种基于Transformer的集合操作符,能够动态聚合实例集合中的特征,显著提升了肾病病理诊断的性能 研究仅在两种肾病场景中进行了验证,尚未在其他病理学领域进行广泛测试 通过引入PICASO集合操作符,提升肾病病理诊断的准确性和性能 IgA肾病中的活动性新月体病变检测和肾移植中的抗体介导排斥反应(AMR)分类 数字病理学 肾病 深度学习 Transformer 图像 IgA肾病数据集包含6206个PAS染色的肾小球图像(5792个无活动性新月体,414个有活动性新月体),AMR分类数据集包含1655个PAS染色的肾小球图像(769个AMR,886个非AMR) NA NA NA NA
19822 2025-03-06
GNINA 1.3: the next increment in molecular docking with deep learning
2025-Mar-02, Journal of cheminformatics IF:7.1Q1
研究论文 本文介绍了开源分子对接软件GNINA的1.3版本,该版本更新了深度学习框架并引入了新的功能 GNINA 1.3更新了深度学习框架至PyTorch,提高了计算效率,并引入了知识蒸馏的CNN评分函数,支持共价对接 未明确提及具体限制 提高分子对接的计算效率和准确性,支持共价对接 分子对接软件GNINA 计算机辅助药物设计 NA 分子对接,深度学习 CNN 分子结构数据 使用CrossDocked2020 v1.3数据集进行训练 NA NA NA NA
19823 2025-03-06
Establishment of cancer cell radiosensitivity database linked to multi-layer omics data
2025-Mar, Cancer science IF:4.5Q1
研究论文 本文旨在建立一个与多层组学数据相关联的癌细胞放射敏感性数据库,以探索癌症放射敏感性 通过深度学习筛选大量文献,建立了一个包含285个细胞系的放射敏感性数据库,并与多层组学数据相关联 数据库的建立依赖于文献数据,可能存在数据质量和一致性的问题 探索癌症放射敏感性,并建立一个与多层组学数据相关联的放射敏感性数据库 癌细胞系 数字病理学 癌症 深度学习 NA 文献数据、组学数据 285个细胞系,来自28种癌症类型 NA NA NA NA
19824 2025-03-06
Deep learning detected histological differences between invasive and non-invasive areas of early esophageal cancer
2025-Mar, Cancer science IF:4.5Q1
研究论文 本研究利用深度学习技术探索早期食管癌中浸润区与非浸润区的组织学差异 首次使用AI模型(CLAM)分析早期食管癌的浸润区与非浸润区的组织学差异,并发现浸润区血管数量和大小显著增加 样本量较小(75例),且仅针对食管鳞状细胞癌(ESCC)进行研究,未涵盖其他类型的食管癌 探索早期食管癌中浸润区与非浸润区的形态学差异,以揭示浸润机制 75例食管鳞状细胞癌(ESCC)患者的组织样本 数字病理学 食管癌 内镜黏膜下剥离术(ESD) CLAM(聚类约束注意力多实例学习模型) 图像 75例食管鳞状细胞癌(ESCC)患者的组织样本 NA NA NA NA
19825 2025-03-06
Deep denoising approach to improve shear wave phase velocity map reconstruction in ultrasound elastography
2025-Mar, Medical physics IF:3.2Q1
研究论文 本研究开发了一种深度学习方法来去噪超声剪切波弹性成像中的剪切波场,以改进剪切波相速度图像的重建 提出了一种基于深度学习的去噪方法,通过将粒子速度数据转换为时频表示,并使用编码器和解码器卷积块的神经网络来提取信号,显著提高了高噪声场景下的信噪比 研究主要基于模拟和实验数据,尚未在临床环境中进行大规模验证 改进超声剪切波弹性成像中的剪切波相速度图像重建 模拟体模和离体山羊肝组织数据 医学影像处理 NA 深度学习 卷积神经网络(CNN) 超声图像 185,570个样本,其中80%用于训练,20%用于验证 NA NA NA NA
19826 2025-03-06
Artificial intelligence-based tissue segmentation and cell identification in multiplex-stained histological endometriosis sections
2025-Mar-01, Human reproduction (Oxford, England)
研究论文 本文探讨了如何通过人工智能技术对多重染色子宫内膜异位症切片进行组织分割和细胞识别,以理解组织组成 结合机器学习组织分析软件和深度学习算法,实现了对子宫内膜异位症切片的自动化组织分割和细胞识别 研究样本数量有限,未来需要增加样本量以细化亚型特异性差异,并应包含胶原丰富的无细胞区域的量化 实现子宫内膜异位症切片的自动化组织分割和细胞识别,以理解组织组成 子宫内膜异位症组织切片 数字病理学 子宫内膜异位症 多重免疫荧光染色 机器学习、深度学习 图像 8名不同亚型患者的子宫内膜异位症组织样本 NA NA NA NA
19827 2025-03-06
Natural language processing of electronic health records for early detection of cognitive decline: a systematic review
2025-Mar-01, NPJ digital medicine IF:12.4Q1
系统综述 本文系统评估了自然语言处理(NLP)方法在电子健康记录临床笔记中检测认知障碍的应用 本文首次系统性地评估了NLP在电子健康记录中检测认知障碍的性能,并比较了不同算法(规则基础、传统机器学习和深度学习)的效果 主要挑战包括电子健康记录数据捕获不完整、临床文档实践不一致以及外部验证有限 评估NLP在电子健康记录中检测认知障碍的有效性 电子健康记录中的临床笔记 自然语言处理 认知障碍 自然语言处理(NLP) 规则基础算法、传统机器学习、深度学习 文本 1,064,530份临床笔记 NA NA NA NA
19828 2025-10-07
Automatic Calculation of Cervical Spine Parameters Using Deep Learning: Development and Validation on an External Dataset
2025-Mar, Global spine journal IF:2.6Q1
研究论文 开发并验证用于自动计算颈椎X光片参数的深度学习模型 首次使用深度学习模型在外部数据集上自动计算多个重要颈椎参数,并验证其泛化能力 训练数据集相对较小(1498张图像),外部验证集规模有限(79张图像) 开发自动计算颈椎参数的深度学习模型 颈椎侧位X光片 计算机视觉 颈椎疾病 X射线成像 深度学习 医学影像 训练集1498张图像,外部验证集79张图像 NA NA 中位绝对误差, 标准差 NA
19829 2025-03-06
Urban fabric decoded: High-precision building material identification via deep learning and remote sensing
2025-Mar, Environmental science and ecotechnology IF:14.0Q1
研究论文 本文介绍了一种利用深度学习和遥感技术进行高精度建筑材料识别的新框架 该框架结合了最新的传感技术和深度学习,能够利用遥感数据和Google街景图像识别屋顶和外墙材料,展示了模型在不同地理环境和建筑风格中的可扩展性和适应性 模型的训练和验证主要基于丹麦城市的数据,可能在其他地区的适用性需要进一步验证 旨在通过高精度建筑材料识别为城市环境中的碳减排、建筑改造和循环经济策略提供信息 丹麦城市(如欧登塞、哥本哈根、奥胡斯和奥尔堡)的建筑材料 计算机视觉 NA 深度学习 深度学习模型 遥感数据和Google街景图像 丹麦多个城市的建筑数据集 NA NA NA NA
19830 2025-03-06
PointWavelet: Learning in Spectral Domain for 3-D Point Cloud Analysis
2025-Mar, IEEE transactions on neural networks and learning systems IF:10.2Q1
研究论文 本文提出了一种名为PointWavelet的新方法,通过在谱域中探索局部图来改进3D点云分析 引入可学习的图小波变换,避免耗时的谱分解,显著加速训练过程 NA 改进3D点云分类和分割的深度学习方法 3D点云数据 计算机视觉 NA 图小波变换 CNN 3D点云 四个流行的点云数据集:ModelNet40、ScanObjectNN、ShapeNet-Part和S3DIS NA NA NA NA
19831 2025-03-06
Scalable Moment Propagation and Analysis of Variational Distributions for Practical Bayesian Deep Learning
2025-Mar, IEEE transactions on neural networks and learning systems IF:10.2Q1
研究论文 本文提出了一种基于矩传播(MP)的快速可靠的贝叶斯深度学习方法,通过引入扩展的批量归一化层来训练深度学习模型,并探讨了不同变分分布的处理方法 提出了一种基于矩传播的贝叶斯深度学习方法,通过扩展的批量归一化层来训练深度学习模型,并研究了不同变分分布的处理方法 MP方法在深度模型中的适用性尚未充分探索,且设计良好校准的MP模型仍然具有挑战性 实现快速且可靠的贝叶斯深度学习方法,以处理预测不确定性 深度学习模型及其预测不确定性 机器学习 NA 矩传播(MP),变分推断(VI),蒙特卡罗采样(MC) 贝叶斯深度学习模型 NA NA NA NA NA NA
19832 2025-03-06
Learning Rates of Deep Nets for Geometrically Strongly Mixing Sequence
2025-Mar, IEEE transactions on neural networks and learning systems IF:10.2Q1
研究论文 本文为深度神经网络在几何强混合序列下的快速学习率建立了理论基础 首次提出了基于混合序列的深度神经网络方法的收敛性结果,这是对独立样本情况的自然推广 现有研究假设样本独立,这一假设在许多现实场景中过于强烈 建立深度神经网络在依赖样本情况下的快速学习率理论基础 深度神经网络回归中的经验风险最小化 机器学习 NA NA 深度神经网络 (DNN) NA NA NA NA NA NA
19833 2025-03-06
On Model of Recurrent Neural Network on a Time Scale: Exponential Convergence and Stability Research
2025-Mar, IEEE transactions on neural networks and learning systems IF:10.2Q1
研究论文 本文研究了在时间尺度上使用延迟微分方程建模的递归神经网络(RNN)的架构设计,重点探讨了系统的定性行为和稳定性 本文创新性地在时间尺度上结合多个离散和分布式延迟,探索了RNN模型的指数稳定性,并比较了Hilger和常规指数函数两种构建指数估计的方法 研究主要集中于理论分析和数值模拟,缺乏实际应用场景的验证 研究目的是在时间尺度上建模和探讨延迟RNN的架构设计及其稳定性 递归神经网络(RNN)及其在时间尺度上的动态行为 机器学习 NA 延迟微分方程 RNN 数值数据 两个模型:一个两神经元网络(含四个离散和分布式延迟)和一个七神经元环格延迟网络 NA NA NA NA
19834 2025-03-06
Statistical Machine Learning for Power Flow Analysis Considering the Influence of Weather Factors on Photovoltaic Power Generation
2025-Mar, IEEE transactions on neural networks and learning systems IF:10.2Q1
研究论文 本文提出了一种基于统计机器学习的随机天气生成器(SWG),用于分析考虑天气因素影响的光伏发电的电力潮流 结合生成对抗网络(GANs)、概率论和信息论,提出了一种新的深度学习模型,用于生成和评估全年每小时的模拟天气数据 未提及具体局限性 分析天气因素对光伏发电和天气敏感负荷的影响,以提高电力潮流分析的准确性 光伏发电和天气敏感负荷 机器学习 NA 统计机器学习(SML) 生成对抗网络(GANs) 天气数据 中国广东的一个实际配电网络,使用全年模拟数据进行电力潮流分析 NA NA NA NA
19835 2025-03-06
Toward Efficient Convolutional Neural Networks With Structured Ternary Patterns
2025-Mar, IEEE transactions on neural networks and learning systems IF:10.2Q1
研究论文 本文提出了一种利用结构化三元模式(STePs)设计高效卷积神经网络(ConvNet)架构的方法,以减少训练和推理过程中的资源需求 通过使用从局部二值模式(LBPs)和Haar特征生成的非学习权重参数,减少了卷积神经网络的总权重更新,从而提高了效率 该方法需要进一步研究非学习权重的良好先验,以在不改变网络结构的情况下提高深度学习架构的效率 设计高效的卷积神经网络架构,以减少资源需求并提高在移动和嵌入式平台上的应用 卷积神经网络(ConvNets) 计算机视觉 NA 局部二值模式(LBPs)和Haar特征 卷积神经网络(ConvNets) 图像 四个图像分类数据集 NA NA NA NA
19836 2025-03-06
IoT-Based Elderly Health Monitoring System Using Firebase Cloud Computing
2025-Mar, Health science reports IF:2.1Q3
研究论文 本研究开发并验证了一种基于物联网的老年人健康监测系统,旨在提高老年人的生活质量 系统集成了Firebase云平台和Android用户界面,实现了实时数据收集和分析,并采用监督机器学习技术进行健康状况预测 样本量较小,仅涉及六名参与者,未来可扩展样本量以验证系统的普适性 开发一种基于物联网的老年人健康监测系统,以应对日益增长的老年人口对医疗系统的挑战 老年人 物联网 老年疾病 监督机器学习 XGBoost 实时生理数据(心率、血氧饱和度、体温) 六名参与者 NA NA NA NA
19837 2025-03-06
XLTLDisNet: A novel and lightweight approach to identify tomato leaf diseases with transparency
2025-Feb-28, Heliyon IF:3.4Q1
研究论文 本文提出了一种名为XLTLDisNet的新型轻量级深度学习模型,用于识别番茄叶部疾病,并增强了模型的可解释性 提出了一种新型轻量级深度学习模型XLTLDisNet,并集成了可解释性AI技术(如GRAD-CAM和LIME)以增强模型的可解释性 未提及具体局限性 通过早期检测番茄叶部疾病,减少农业损失并最大化产量 番茄叶部疾病 计算机视觉 NA 深度学习 XLTLDisNet 图像 PlantVillage番茄叶部疾病数据集,包含十类番茄叶部疾病(包括健康图像) NA NA NA NA
19838 2025-03-06
A hybrid Bayesian network-based deep learning approach combining climatic and reliability factors to forecast electric vehicle charging capacity
2025-Feb-28, Heliyon IF:3.4Q1
研究论文 本文提出了一种结合气候和可靠性因素的混合贝叶斯网络深度学习模型,用于预测电动汽车充电容量 创新点在于将排队网络和贝叶斯网络模型与深度学习技术结合,以提高预测精度和基础设施可靠性 未明确提及具体局限性 开发一个综合系统,考虑气象条件和充电桩故障率等多种影响因素,以优化电动汽车基础设施 电动汽车充电需求 机器学习 NA 深度学习 混合贝叶斯网络深度学习(HBNDL) 交易数据和气候分析数据 未明确提及具体样本数量 NA NA NA NA
19839 2025-03-06
Dual Accuracy-Quality-Driven Neural Network for Prediction Interval Generation
2025-Feb, IEEE transactions on neural networks and learning systems IF:10.2Q1
研究论文 本文提出了一种用于回归任务中预测区间(PI)生成的神经网络方法,旨在提高深度学习模型在现实世界应用中的可靠性 设计了一种新颖的损失函数,用于PI生成网络,该函数考虑了目标估计网络的输出,并具有两个优化目标:最小化平均PI宽度和确保PI完整性,通过隐式最大化PI概率覆盖率的约束 NA 提高深度学习模型在回归任务中的不确定性量化能力,生成高质量的预测区间 回归任务中的神经网络模型 机器学习 NA 深度学习 神经网络 合成数据集、基准数据集、实际作物产量预测数据集 使用了一个合成数据集、八个基准数据集和一个实际作物产量预测数据集 NA NA NA NA
19840 2025-03-06
A Lightweight Group Transformer-Based Time Series Reduction Network for Edge Intelligence and Its Application in Industrial RUL Prediction
2025-Feb, IEEE transactions on neural networks and learning systems IF:10.2Q1
研究论文 本文提出了一种轻量级组变压器时间序列缩减网络(GT-MRNet),用于工业剩余使用寿命(RUL)预测,旨在满足边缘智能的实时响应需求 GT-MRNet通过自适应选择必要的时间步长来减少计算量,采用轻量级组变压器提取特征,并提出时间序列缩减策略和多层次学习机制,显著降低了参数和计算成本 未明确提及具体局限性 开发一种适用于边缘设备的轻量级深度学习模型,用于工业剩余使用寿命(RUL)预测 工业设备的剩余使用寿命预测 机器学习 NA 深度学习 Transformer, GT-MRNet 时间序列数据 基于真实世界条件数据集的广泛实验结果 NA NA NA NA
回到顶部