本数据库通过收集和整理最新科研文献信息而得,供了解领域前沿进展之用。数据源自 PubMed Data ,每日自动更新(使用关键词“['deep learning']”过滤),已收录文献数量参见 统计表格。表格内容由 GPT 自动整理,可能存在错误或遗漏,请使用时务必注意核实!
如有建议或合作意向,欢迎联系 linlin.yan(AT)bioinfo.app 或 微信 yanlinlin82。本项目遵循 MIT 许可 发布,欢迎下载 源码 自行修改使用。如觉得不错,还请不吝 给我打赏,你的支持是我继续创新的重要动力!


除通过在线浏览外,为方便用户离线查阅,本站也提供 付费下载(定价19.9元)。之所以考虑收费,是因为批量扫描这些文献并整理也是有一定成本的,还请理解并多多支持。本站数据会持续更新,而仅需一次付费,未来就可以随时重新下载到最新版本数据。
| 序号 | 推送日期 | 文章 | 类型 | 简述 | 创新点 | 不足 | 研究目的 | 研究对象 | 领域 | 病种 | 技术 | 模型 | 数据类型 | 样本量 | 算法框架 | 模型架构 | 性能指标 | 计算资源 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 19901 | 2025-03-06 |
Artificial Intelligence in Neuroendovascular Procedures
2025, Journal of neuroendovascular therapy
DOI:10.5797/jnet.ra.2024-0107
PMID:40034100
|
综述 | 本文综述了人工智能在神经血管介入手术中的当前应用和未来潜力,重点关注基于AI的图像识别、实时手术辅助和未来发展 | 探讨了AI在神经血管介入手术中的创新应用,包括血管结构分析、设备检测和实时辅助系统,以及未来与机器人系统的集成 | 当前系统存在一些局限性,但技术进步表明AI在提高手术安全性、标准化和患者预后方面的作用将不断扩大 | 研究人工智能在神经血管介入手术中的应用及其潜力 | 神经血管介入手术 | 医学影像分析 | 神经血管疾病 | 深度学习算法 | NA | 图像 | NA | NA | NA | NA | NA |
| 19902 | 2025-03-06 |
Artificial intelligence in stroke risk assessment and management via retinal imaging
2025, Frontiers in computational neuroscience
IF:2.1Q3
DOI:10.3389/fncom.2025.1490603
PMID:40034651
|
综述 | 本文探讨了人工智能在通过视网膜成像评估和管理中风风险中的作用,重点关注视网膜成像在临床工作流程中的整合 | 利用机器学习和深度学习算法增强视网膜成像,展示了在早期疾病检测、严重程度分级和预后评估中的潜力 | 缺乏标准化的成像协议、对AI生成预测的信任不足、视网膜成像数据与电子健康记录的整合不足、需要在多样化人群中验证、以及伦理和监管问题 | 探讨人工智能在中风患者护理中的作用,特别是通过视网膜成像进行中风风险评估和管理 | 中风患者 | 数字病理学 | 中风 | 视网膜成像 | Xception, EfficientNet, Inception, ResNet, VGG, 随机森林, 支持向量机 | 图像 | NA | NA | NA | NA | NA |
| 19903 | 2025-03-06 |
Cardiotocography-Based Experimental Comparison of Artificial Intelligence and Human Judgment in Assessing Fetal Asphyxia During Delivery
2025-Jan, Cureus
DOI:10.7759/cureus.78282
PMID:40034878
|
研究论文 | 本研究通过实验比较了人工智能和人类专家在使用CTG数据预测胎儿窒息方面的诊断准确性 | 首次系统地比较了AI和人类专家在CTG数据解读上的表现,并探讨了AI辅助诊断的潜力 | AI算法的诊断准确性尚未超越人类专家,且需要进一步优化和更多CTG数据的积累 | 评估AI在胎儿窒息诊断中的潜力,并探讨其与人类判断的结合效果 | 胎儿窒息诊断 | 医疗人工智能 | 胎儿窒息 | 机器学习和深度学习 | ML和DL算法 | CTG数据 | 3,519个CTG数据集和984个CTG图 | NA | NA | NA | NA |
| 19904 | 2025-03-06 |
The application of artificial intelligence in insomnia, anxiety, and depression: A bibliometric analysis
2025 Jan-Dec, Digital health
IF:2.9Q2
DOI:10.1177/20552076251324456
PMID:40035038
|
研究论文 | 本文通过文献计量分析,系统回顾了人工智能在失眠、焦虑和抑郁症中的应用,识别了关键研究热点并预测了未来趋势 | 首次通过文献计量工具(如VOSviewer和CiteSpace)对人工智能在心理健康领域的应用进行系统性分析,并识别了未来研究重点 | 数据隐私、伦理问题以及AI模型的可解释性仍需解决 | 系统回顾人工智能在失眠、焦虑和抑郁症中的应用,识别研究热点并预测未来趋势 | 失眠、焦虑和抑郁症 | 自然语言处理 | 精神疾病 | 文献计量分析 | 神经网络、机器学习、深度学习 | 文献数据 | 875篇文章 | NA | NA | NA | NA |
| 19905 | 2025-03-06 |
Understanding Deep Learning via Decision Boundary
2025-Jan, IEEE transactions on neural networks and learning systems
IF:10.2Q1
DOI:10.1109/TNNLS.2023.3326654
PMID:37922185
|
研究论文 | 本文探讨了神经网络决策边界变异性与泛化能力之间的关系,并提出了新的度量方法 | 提出了算法决策边界变异性和数据决策边界变异性两个新概念,用于从算法和数据角度衡量决策边界变异性 | 未明确提及具体局限性 | 研究神经网络决策边界变异性与泛化能力之间的关系 | 神经网络的决策边界 | 机器学习 | NA | NA | 神经网络 | NA | 未明确提及样本数量 | NA | NA | NA | NA |
| 19906 | 2025-03-06 |
NN2Poly: A Polynomial Representation for Deep Feed-Forward Artificial Neural Networks
2025-Jan, IEEE transactions on neural networks and learning systems
IF:10.2Q1
DOI:10.1109/TNNLS.2023.3330328
PMID:37962996
|
研究论文 | 本文提出了一种名为NN2Poly的理论方法,用于获得已训练的全连接前馈人工神经网络的显式多项式模型 | NN2Poly方法将之前仅限于单隐藏层网络的想法扩展到任意深度的多层感知机(MLP),适用于回归和分类任务 | 该方法在计算上面临挑战,需要在训练阶段施加某些约束来克服这些挑战 | 研究神经网络的可解释性及其理论行为 | 全连接前馈人工神经网络(多层感知机) | 机器学习 | NA | 泰勒展开 | 多层感知机(MLP) | 表格数据 | NA | NA | NA | NA | NA |
| 19907 | 2025-03-06 |
Deep Learning Model Compression With Rank Reduction in Tensor Decomposition
2025-Jan, IEEE transactions on neural networks and learning systems
IF:10.2Q1
DOI:10.1109/TNNLS.2023.3330542
PMID:37976188
|
研究论文 | 本文提出了一种新颖的深度学习模型压缩方法,通过张量分解中的迭代和自适应秩减少来实现 | 提出了一种双模型训练策略,结合迭代和自适应秩减少,显著减少了超参数搜索空间,并在保持模型准确性的同时实现了模型压缩 | 未提及具体局限性 | 研究深度学习模型压缩方法,以在轻量级边缘设备上部署大型神经网络模型 | 深度学习模型(如LeNet、VGG、ResNet、EfficientNet、RevCol) | 机器学习 | NA | 张量分解 | 深度学习模型 | 图像 | MNIST、CIFAR-10/100、ImageNet数据集 | NA | NA | NA | NA |
| 19908 | 2025-03-06 |
Communication-Efficient Nonconvex Federated Learning With Error Feedback for Uplink and Downlink
2025-Jan, IEEE transactions on neural networks and learning systems
IF:10.2Q1
DOI:10.1109/TNNLS.2023.3333804
PMID:37995164
|
研究论文 | 本文提出了两种通信高效的非凸联邦学习算法,EF21和LAG,用于适应上行和下行通信,以减少通信成本而不牺牲学习质量 | 提出了新的EF21算法和LAG梯度过滤技术,结合两者设计了EF-LAG算法,并进一步提出了双向EF-LAG算法,显著减少了通信成本 | 未提及具体限制 | 研究在大规模在线学习环境中,如何通过通信高效的非凸联邦学习算法减少通信成本 | 在线招募的工人设备,如手机、笔记本电脑和台式电脑 | 机器学习 | NA | EF21算法、LAG梯度过滤技术 | 非凸联邦学习模型 | 合成数据和深度学习基准数据 | 未提及具体样本数量 | NA | NA | NA | NA |
| 19909 | 2025-03-06 |
A Novel Sequence-to-Sequence-Based Deep Learning Model for Multistep Load Forecasting
2025-Jan, IEEE transactions on neural networks and learning systems
IF:10.2Q1
DOI:10.1109/TNNLS.2023.3329466
PMID:38241098
|
研究论文 | 本文提出了一种基于序列到序列(Seq2Seq)的深度学习模型,用于多步负荷预测,以优化能源资源分配和辅助决策过程 | 提出了一种基于时间序列分解策略的Seq2Seq深度学习模型,该模型由一系列基本块组成,每个基本块包括一个编码器和两个解码器,并通过残差连接 | 未提及模型的局限性 | 开发一种新的深度学习模型,用于多步负荷预测,以提高能源管理的效率和决策的准确性 | 电力系统中的负荷预测 | 机器学习 | NA | 时间序列分解策略 | Seq2Seq, TCN, LSTM | 时间序列数据 | 多个真实世界数据集中的案例 | NA | NA | NA | NA |
| 19910 | 2025-03-06 |
Deep Face Leakage: Inverting High-Quality Faces From Gradients Using Residual Optimization
2025, IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
IF:10.8Q1
DOI:10.1109/TIP.2025.3533210
PMID:40036427
|
研究论文 | 本文提出了一种名为DFLeak的方法,通过残差优化从梯度中反演高质量面部图像,以增强协作学习中的面部数据泄露效果 | 引入了一种优越的初始化方法来稳定反演过程,并提出了一种无先验面部恢复(PFFR)结果的残差优化方法,以丰富面部细节 | 未明确提及具体限制 | 提高从梯度中反演面部图像的质量,以增强协作学习中的隐私保护效果 | 面部图像 | 计算机视觉 | NA | 梯度反演攻击 | NA | 图像 | 未明确提及样本数量 | NA | NA | NA | NA |
| 19911 | 2025-03-06 |
Identification of benign and malignant breast nodules on ultrasound: comparison of multiple deep learning models and model interpretation
2025, Frontiers in oncology
IF:3.5Q2
DOI:10.3389/fonc.2025.1517278
PMID:40040727
|
研究论文 | 本研究开发了一种弱监督深度学习算法,用于区分超声图像中的良性和恶性乳腺肿瘤,无需图像注释 | 提出了一种无需图像注释的弱监督深度学习算法,用于乳腺肿瘤的超声诊断 | 研究中使用的数据集可能有限,且未涉及其他类型的肿瘤或不同成像技术 | 开发一种弱监督深度学习算法,以提高乳腺肿瘤超声诊断的准确性 | 乳腺超声图像中的良性和恶性结节 | 计算机视觉 | 乳腺癌 | 深度学习 | DenseNet121, ResNet50, EfficientNetb0, Vision Transformer | 图像 | 3049张乳腺超声图像(良性1320张,恶性1729张) | NA | NA | NA | NA |
| 19912 | 2025-03-06 |
A bibliometric analysis of studies on artificial intelligence in neuroscience
2025, Frontiers in neurology
IF:2.7Q3
DOI:10.3389/fneur.2025.1474484
PMID:40040909
|
研究论文 | 本文通过文献计量分析探讨了人工智能在神经科学领域的研究趋势和影响 | 首次对1983年至2024年间发表的1,208篇相关研究进行系统性分析,揭示了该领域的快速增长和国际合作趋势 | 未深入探讨AI模型在神经科学中的伦理问题和数据隐私问题 | 评估人工智能在神经科学中的应用现状和未来方向 | 神经科学领域的人工智能研究 | 机器学习 | 神经系统疾病 | 文献计量分析 | 深度学习, 机器学习 | 文献数据 | 1,208篇研究论文 | NA | NA | NA | NA |
| 19913 | 2025-03-06 |
TAL-SRX: an intelligent typing evaluation method for KASP primers based on multi-model fusion
2025, Frontiers in plant science
IF:4.1Q1
DOI:10.3389/fpls.2025.1539068
PMID:40041015
|
研究论文 | 本文提出了一种基于多模型融合的KASP引物分型效果智能评估方法TAL-SRX,旨在提高分子标记辅助育种中优秀标记的大规模筛选效率 | 通过结合深度学习和传统机器学习算法,提出了一种新的KASP引物分型效果评估方法,并引入了Transformer算法来捕捉高维特征空间中的全局依赖关系 | 未明确提及方法的局限性 | 提高KASP引物分型效果评估的智能化和准确性,以支持分子标记辅助育种 | KASP引物的分型效果 | 机器学习 | NA | 深度学习,传统机器学习 | ANN, LSTM, Transformer | KASP测试结果数据 | 3399组棉花品种资源材料的KASP测试结果 | NA | NA | NA | NA |
| 19914 | 2025-03-06 |
Evaluating inter- and intra-rater reliability in assessing upper limb compensatory movements post-stroke: creating a ground truth through video analysis?
2024-Dec-20, Journal of neuroengineering and rehabilitation
IF:5.2Q1
DOI:10.1186/s12984-024-01506-7
PMID:39702329
|
研究论文 | 本研究通过视频分析评估职业和物理治疗师在评估中风后上肢补偿运动时的评分者间和评分者内可靠性 | 使用深度学习方法和广义线性混合效应模型评估补偿运动的可靠性,为自动评估补偿运动建立基础 | 研究结果的可信区间较宽,可能影响结果的可靠性,且仅基于治疗师的评分无法推荐建立自动评估补偿运动的基准 | 评估职业和物理治疗师在评估中风后上肢补偿运动时的评分者间和评分者内可靠性 | 七名轻度至中度上肢运动障碍的中风患者 | 数字病理 | 中风 | 视频分析 | 广义线性混合效应模型 | 视频 | 七名中风患者和二十二名治疗师 | NA | NA | NA | NA |
| 19915 | 2025-03-06 |
Lazy Resampling: Fast and information preserving preprocessing for deep learning
2024-Dec, Computer methods and programs in biomedicine
IF:4.9Q1
DOI:10.1016/j.cmpb.2024.108422
PMID:39395305
|
研究论文 | 本文介绍了一种名为Lazy Resampling的软件,旨在优化深度学习中的预处理步骤,减少信息损失并简化流程设计 | Lazy Resampling通过将空间预处理操作重新表述为图形管道,减少了管道执行时间和信号退化,使裁剪等操作变为非破坏性 | 尽管Lazy Resampling在减少信息损失和简化流程设计方面表现出色,但其在医学影像等领域的广泛应用仍需进一步验证 | 优化深度学习中的预处理步骤,减少信息损失并简化流程设计 | 医学影像数据 | 计算机视觉 | NA | 深度学习 | UNet | 图像 | Medical Segmentation Decathlon数据集 | NA | NA | NA | NA |
| 19916 | 2025-03-06 |
Fully Automated Region-Specific Human-Perceptive-Equivalent Image Quality Assessment: Application to 18 F-FDG PET Scans
2024-Dec-01, Clinical nuclear medicine
IF:9.6Q1
DOI:10.1097/RLU.0000000000005526
PMID:39466652
|
研究论文 | 本文提出了一种全自动框架,用于对全身18 F-FDG PET扫描进行区域图像质量评估(IQA) | 该框架能够在日常临床图像采集过程中即时识别低质量扫描,并在人工智能驱动的18 F-FDG PET分析模型开发中通过拒绝低质量图像和带有伪影的图像来构建干净的数据集 | 研究样本量相对较小,且未对不同模型之间的性能差异进行深入分析 | 开发一种全自动且与人类感知等效的模型,用于对18 F-FDG PET图像进行区域图像质量评估 | 87名患者的174张18 F-FDG PET图像 | 数字病理学 | NA | 深度学习(DL)和放射组学机器学习(radiomics-ML) | 深度学习模型和机器学习模型 | 图像 | 87名患者的174张18 F-FDG PET图像 | NA | NA | NA | NA |
| 19917 | 2025-03-06 |
Lightweight Transformer exhibits comparable performance to LLMs for Seizure Prediction: A case for light-weight models for EEG data
2024-Dec, Proceedings : ... IEEE International Conference on Big Data. IEEE International Conference on Big Data
|
研究论文 | 本文提出了一种轻量级Transformer架构,用于实时EEG数据的癫痫发作预测,并与多种深度学习模型进行了性能比较 | 提出了一种轻量级Transformer架构,具有更小的模型尺寸和更低的计算负载,能够在实时推理中表现优异 | EEG传感器数据质量的可变性、不同癫痫和发作特征、缺乏标注数据集和ML-ready基准 | 开发一种能够在有限硬件计算能力下实时推理的轻量级模型,用于癫痫发作预测 | 癫痫患者的EEG数据 | 机器学习 | 癫痫 | 深度学习 | Transformer, ResNet, ViT, LLM | EEG数据 | MLSPred-Bench数据集,包含12个基准测试 | NA | NA | NA | NA |
| 19918 | 2025-03-06 |
PTransIPs: Identification of Phosphorylation Sites Enhanced by Protein PLM Embeddings
2024-06, IEEE journal of biomedical and health informatics
IF:6.7Q1
DOI:10.1109/JBHI.2024.3377362
PMID:38483806
|
研究论文 | 本研究开发了一个名为PTransIPs的深度学习框架,用于识别磷酸化位点,该框架在独立测试中表现优于现有最先进方法 | PTransIPs首次将蛋白质预训练语言模型(PLM)嵌入应用于此任务,结合了Transformer架构和卷积神经网络,并采用了TIM损失函数进行优化 | NA | 开发一个深度学习框架以准确识别磷酸化位点,从而揭示细胞内的分子机制和病毒感染过程中的关键点 | 磷酸化位点 | 生物信息学 | NA | 深度学习 | Transformer, CNN | 蛋白质序列和结构数据 | NA | NA | NA | NA | NA |
| 19919 | 2025-03-06 |
Preliminary Results: Comparison of Convolutional Neural Network Architectures as an Auxiliary Clinical Tool Applied to Screening Mammography in Mexican Women
2024-Jun, Journal of medical and biological engineering
IF:1.6Q4
DOI:10.1007/s40846-024-00868-6
PMID:40027073
|
研究论文 | 本研究开发了一种新型卷积神经网络(CNN)用于乳腺X光片的良恶性分类,并与使用迁移学习的预训练CNN模型进行比较 | 开发了一种新型CNN模型,并在墨西哥女性乳腺X光片数据集上进行了训练和验证,填补了该领域的数据和工具空白 | 研究样本量相对较小,且仅使用了两个数据库的数据 | 开发并验证一种新型CNN模型,用于乳腺X光片的良恶性分类 | 乳腺X光片 | 计算机视觉 | 乳腺癌 | 卷积神经网络(CNN) | CNN, DenseNet121, MobileNetV2, ResNet50, VGG16 | 图像 | 1,070张乳腺X光片(来自235名墨西哥患者)和MIAS数据库中的乳腺X光片 | NA | NA | NA | NA |
| 19920 | 2025-03-06 |
From Basic to Extra Features: Hypergraph Transformer Pretrain-then-Finetuning for Balanced Clinical Predictions on EHR
2024-Jun, Proceedings of machine learning research
PMID:40041452
|
研究论文 | 本文提出了一种名为HTP-Star的模型,利用超图结构和预训练-微调框架来建模电子健康记录(EHR)数据,并设计了两种技术以增强模型在微调过程中的鲁棒性 | HTP-Star模型通过超图结构和预训练-微调框架,实现了对EHR数据的建模,并能够无缝整合额外特征,同时在微调过程中增强了模型的鲁棒性 | 未明确提及具体限制 | 研究目的是通过深度学习模型改进对电子健康记录(EHR)数据的处理,以实现更平衡的临床预测 | 电子健康记录(EHR)数据 | 机器学习 | NA | 超图结构、预训练-微调框架 | HTP-Star | 电子健康记录(EHR)数据 | 两个真实的EHR数据集 | NA | NA | NA | NA |