本数据库通过收集和整理最新科研文献信息而得,供了解领域前沿进展之用。数据源自 PubMed Data ,每日自动更新,已收录文献数量参见 统计表格。表格内容由 GPT 自动整理,可能存在错误或遗漏,请使用时务必注意核实!
如有建议或合作意向,欢迎联系 linlin.yan(AT)bioinfo.app 或 微信 yanlinlin82。本项目遵循 MIT 许可 发布,欢迎下载 源码 自行修改使用。如觉得不错,还请不吝 给我打赏,你的支持是我继续创新的重要动力!
除通过在线浏览外,为方便用户离线查阅,本站也提供 付费下载(定价10元)。之所以考虑收费,是因为批量扫描这些文献并整理也是有一定成本的,还请理解并多多支持。本站数据会持续更新,而仅需一次付费,未来就可以随时重新下载到最新版本数据。
序号 | 推送日期 | 文章 | 类型 | 简述 | 创新点 | 不足 | 研究目的 | 研究对象 | 领域 | 病种 | 技术 | 模型 | 数据类型 | 样本量 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
19961 | 2024-08-07 |
A Deep Learning Ensemble Method to Assist Cytopathologists in Pap Test Image Classification
2021-Jul-09, Journal of imaging
IF:2.7Q3
DOI:10.3390/jimaging7070111
PMID:39080899
|
研究论文 | 本文提出了一种深度学习集成方法,用于辅助细胞病理学家对宫颈涂片图像进行细胞分类 | 本文采用了10种深度卷积神经网络,并提出了三种最佳架构的集成方法,以提高细胞分类的准确性,并引入了六类分类结果 | NA | 旨在提高宫颈癌预防测试中细胞分类的准确性,并减轻细胞病理学家的工作负担 | 宫颈涂片图像中的细胞核 | 计算机视觉 | 宫颈癌 | 深度学习 | CNN | 图像 | 实验中使用的数据集来自细胞识别和检查中心(CRIC)的可搜索图像数据库 |
19962 | 2024-08-07 |
How Can a Deep Learning Algorithm Improve Fracture Detection on X-rays in the Emergency Room?
2021-Jun-25, Journal of imaging
IF:2.7Q3
DOI:10.3390/jimaging7070105
PMID:39080893
|
研究论文 | 本研究评估了一种深度学习算法在急诊室中用于常规X光片骨折检测的性能 | 深度学习算法在急诊室中骨折检测的敏感性和特异性较高,且无需本地数据训练 | 研究样本量较小,且未涉及算法在不同医院或不同数据集上的泛化能力 | 探讨深度学习算法在急诊室中骨折检测的应用价值 | 评估深度学习算法在急诊室中常规X光片骨折检测的性能 | 计算机视觉 | NA | 深度学习 | NA | 图像 | 125名因肢体创伤就诊于Louis Mourier急诊室的患者 |
19963 | 2024-08-07 |
Exposing Manipulated Photos and Videos in Digital Forensics Analysis
2021-Jun-24, Journal of imaging
IF:2.7Q3
DOI:10.3390/jimaging7070102
PMID:39080890
|
研究论文 | 本文提出了一种基于支持向量机(SVM)的机器学习方法,用于区分真实和伪造的多媒体文件,特别是数字照片和视频,这些文件可能包含深度伪造内容 | 该方法通过离散傅里叶变换(DFT)提取简单特征,并在5折交叉验证中取得了优于文献中SVM方法的平均F1分数 | 尽管卷积神经网络(CNN)的表现超过了提出的DFT-SVM复合方法,但DFT-SVM的竞争力结果和显著减少的处理时间使其适合嵌入到Autopsy模块中 | 开发一种自动化工具,帮助刑事调查人员检测篡改的多媒体内容 | 真实和伪造的数字照片及视频 | 计算机视觉 | NA | 支持向量机(SVM),离散傅里叶变换(DFT) | 支持向量机(SVM) | 图像,视频 | 使用了包含合法和伪造照片及视频帧的大型数据集,以及Celeb-DFv1数据集中的590个原始视频 |
19964 | 2024-08-07 |
Breast Cancer Risk Assessment: A Review on Mammography-Based Approaches
2021-Jun-12, Journal of imaging
IF:2.7Q3
DOI:10.3390/jimaging7060098
PMID:39080886
|
综述 | 本文综述了从乳腺X线照片中提取纹理特征并与机器学习算法结合用于评估乳腺癌风险的研究,以及旨在实现相同目标的深度学习方法 | 机器学习和深度学习方法在风险分析领域提供了有前景的结果,无论是风险分层还是风险评分预测 | 未来的研究应考虑将这些方法在临床实践中实施的可能性 | 综述基于乳腺X线照片的乳腺癌风险评估方法 | 乳腺癌风险评估方法及其在临床实践中的应用 | 机器学习 | 乳腺癌 | NA | 机器学习算法,深度学习方法 | 乳腺X线照片 | NA |
19965 | 2024-08-07 |
CVDNet: A novel deep learning architecture for detection of coronavirus (Covid-19) from chest x-ray images
2020-Nov, Chaos, solitons, and fractals
DOI:10.1016/j.chaos.2020.110245
PMID:32921934
|
研究论文 | 本文提出了一种名为CVDNet的深度卷积神经网络模型,用于通过胸部X光图像分类COVID-19感染与正常和其他肺炎病例 | CVDNet模型采用两个并行层次和不同内核大小来捕捉输入的局部和全局特征 | 模型在小型数据集上表现良好,但可能需要更多训练数据以进一步提高性能 | 开发一种低成本且高效的深度学习模型,帮助医疗专业人员快速检测COVID-19并确定感染的严重程度 | COVID-19感染的检测与分类 | 计算机视觉 | 呼吸系统疾病 | 深度学习 | CNN | 图像 | 包含219例COVID-19、1341例正常和1345例病毒性肺炎的胸部X光图像 |
19966 | 2024-08-07 |
Automatic detection of pulmonary nodules on CT images with YOLOv3: development and evaluation using simulated and patient data
2020-Oct, Quantitative imaging in medicine and surgery
IF:2.9Q2
DOI:10.21037/qims-19-883
PMID:33014725
|
研究论文 | 本文开发并评估了一种基于YOLOv3卷积神经网络的高效肺结节计算机辅助检测方法,用于CT图像中肺结节的定位和直径估计 | 该方法采用了YOLOv3算法,具有自动多尺度特征提取器和基于特征的边界框生成器,用于肺结节的特征筛选、定位和直径估计 | NA | 开发一种高效的肺结节计算机辅助检测方法,用于CT图像中肺结节的定位和直径估计 | 肺结节在CT图像中的定位和直径估计 | 计算机视觉 | 肺部疾病 | YOLOv3 | CNN | 图像 | 模拟研究中使用了300个CT扫描,患者研究中使用了888个CT图像 |
19967 | 2024-08-07 |
High expression of MKK3 is associated with worse clinical outcomes in African American breast cancer patients
2020-09-01, Journal of translational medicine
IF:6.1Q1
DOI:10.1186/s12967-020-02502-w
PMID:32873298
|
研究论文 | 本研究通过系统分析基因mRNA表达与临床结果的关系,探讨了非洲裔美国乳腺癌患者的生存差异分子基础,并确定了MKK3基因的高表达与更差的临床结果相关。 | 本研究首次确定了MKK3基因在非洲裔美国乳腺癌患者中的高表达与生存率下降的强相关性,并提出了MKK3-MYC蛋白相互作用作为减少乳腺癌生存种族差异的新治疗靶点。 | 本研究仅基于TCGA数据库中的乳腺癌患者样本,可能存在样本代表性不足的问题。 | 探讨非洲裔美国乳腺癌患者的生存差异分子基础,并寻找新的治疗靶点。 | 非洲裔美国乳腺癌患者及其基因表达与临床结果的关系。 | 数字病理学 | 乳腺癌 | 全卷积深度学习模型 | CNN | 图像 | 1055个乳腺癌样本 |
19968 | 2024-08-07 |
Prognostic Modeling of COVID-19 Using Artificial Intelligence in the United Kingdom: Model Development and Validation
2020-08-25, Journal of medical Internet research
IF:5.8Q1
DOI:10.2196/20259
PMID:32735549
|
研究论文 | 本文利用人工神经网络在英国开发和验证了COVID-19的预后模型 | 首次开发并验证了适用于确诊SARS-CoV-2患者的预后评分系统 | 模型仅在单一地点的数据上进行训练和验证 | 创建一个基于人工神经网络的入院时死亡风险评分系统 | 确诊SARS-CoV-2的患者 | 机器学习 | COVID-19 | 人工神经网络 | ANN | 患者特征数据 | 398名确诊SARS-CoV-2并入院的患者 |
19969 | 2024-08-07 |
Different scaling of linear models and deep learning in UKBiobank brain images versus machine-learning datasets
2020-08-25, Nature communications
IF:14.7Q1
DOI:10.1038/s41467-020-18037-z
PMID:32843633
|
研究论文 | 本文系统地评估了深度学习、核模型和线性模型在UKBiobank脑部图像数据集上的性能,并与传统的机器学习数据集进行了比较 | 研究发现,在UKBiobank脑部图像数据集中,简单的线性模型在年龄和性别预测任务上与复杂的深度学习模型表现相当 | 深度学习和核学习方法在预测典型脑部扫描的常见表型时,其非线性优势未能得到充分利用 | 探讨不同类型的机器学习模型在不同数据集上的性能表现 | UKBiobank脑部图像数据集以及MNIST和Zalando Fashion数据集 | 机器学习 | NA | 深度学习 | 线性模型、核模型、深度学习模型 | 图像 | 样本量达到约10,000名受试者时,线性模型的性能仍在提升 |
19970 | 2024-08-07 |
Deep-learning-based image quality enhancement of compressed sensing magnetic resonance imaging of vessel wall: comparison of self-supervised and unsupervised approaches
2020-08-18, Scientific reports
IF:3.8Q1
DOI:10.1038/s41598-020-69932-w
PMID:32811848
|
研究论文 | 本文比较了基于自监督学习和无监督学习的深度学习算法在压缩感知磁共振成像(MRI)图像质量增强中的应用 | 提出了两种适用于非像素对齐临床数据集的深度学习去噪算法:自监督学习和无监督学习 | 自监督学习在图像噪声和信噪比方面优于无监督学习,但在放射组学特征可重复性方面不如无监督学习 | 研究如何通过深度学习技术提高压缩感知MRI的图像质量,以减少扫描时间并提高诊断准确性 | 颅内血管壁的高分辨率质子密度加权MRI图像 | 计算机视觉 | NA | 压缩感知MRI | 深度学习 | 图像 | NA |
19971 | 2024-08-07 |
Artificial intelligence for the detection of COVID-19 pneumonia on chest CT using multinational datasets
2020-08-14, Nature communications
IF:14.7Q1
DOI:10.1038/s41467-020-17971-2
PMID:32796848
|
研究论文 | 本文展示了使用多国数据集训练的深度学习算法在胸部CT扫描中检测COVID-19肺炎的能力 | 利用AI技术在多国患者数据集上训练的深度学习算法,能够高准确度地区分COVID-19肺炎与其他肺炎 | 文章未提及具体的局限性 | 开发和验证用于胸部CT扫描中快速评估和区分COVID-19肺炎的AI算法 | COVID-19肺炎的检测与区分 | 计算机视觉 | COVID-19 | 深度学习 | 深度学习算法 | 图像 | 训练集包含1280名患者,独立测试集包含1337名患者 |
19972 | 2024-08-07 |
The Advent of Generative Chemistry
2020-Aug-13, ACS medicinal chemistry letters
IF:3.5Q2
DOI:10.1021/acsmedchemlett.0c00088
PMID:32832015
|
综述 | 本文综述了生成对抗网络(GANs)和强化学习(RL)在药物分子设计中的应用及其在生成具有所需性质的新分子方面的最新进展 | 介绍了GANs和RL在药物分子设计中的应用,旨在更有效地利用数据和更好地探索化学空间 | 讨论了生成化学这一新兴领域的当前局限性和挑战 | 回顾生成具有所需性质的新分子的最新进展,并探讨相关技术的应用 | 生成对抗网络(GANs)、强化学习(RL)及相关技术在药物分子设计中的应用 | 机器学习 | NA | 生成对抗网络(GANs)、强化学习(RL) | GAN | 分子数据 | NA |
19973 | 2024-08-07 |
Melanoma Diagnosis Using Deep Learning and Fuzzy Logic
2020-Aug-09, Diagnostics (Basel, Switzerland)
DOI:10.3390/diagnostics10080577
PMID:32784837
|
研究论文 | 本文提出了一种基于深度学习的YOLO算法,结合模糊逻辑用于从皮肤镜和数字图像中检测黑色素瘤 | 本文引入了图论的最小生成树概念和L型模糊数近似方法进行两阶段分割,并在特征提取过程中提取实际受影响的病变区域 | NA | 开发一种更快速且计算有效的系统用于检测黑色素瘤 | 黑色素瘤的检测 | 计算机视觉 | 皮肤癌 | 深度卷积神经网络(DCNNs) | YOLO | 图像 | 20250张图像 |
19974 | 2024-08-07 |
Semantic Deep Learning: Prior Knowledge and a Type of Four-Term Embedding Analogy to Acquire Treatments for Well-Known Diseases
2020-Aug-06, JMIR medical informatics
IF:3.1Q2
DOI:10.2196/16948
PMID:32759099
|
研究论文 | 本研究通过语义深度学习方法,利用先验知识和四项式嵌入类比,系统地提取疾病治疗陈述 | 本研究采用了一种新的四项式嵌入类比方法,不同于传统的成对类比,并利用先验知识进行推理 | 研究中使用的数据集规模相对较小,且需要进一步的人工验证 | 旨在通过语义深度学习方法,系统地从生物医学文献中提取基于证据的疾病治疗陈述 | 疾病治疗陈述的提取和验证 | 自然语言处理 | NA | 连续词袋模型(CBOW)和跳字模型(Skip-gram)嵌入 | 深度学习模型 | 文本 | 423K n-grams 从 PubMed 系统评价子集(PMSB 数据集)中提取 |
19975 | 2024-08-07 |
Feature Selection for Health Care Costs Prediction Using Weighted Evidential Regression
2020-Aug-06, Sensors (Basel, Switzerland)
DOI:10.3390/s20164392
PMID:32781680
|
研究论文 | 本文提出了一种基于加权证据回归的特征选择方法,用于预测医疗保健成本,并允许结果的解释 | 该方法结合了证据回归和k-近邻算法,能够在保持预测准确性的同时提供结果的解释性 | NA | 开发一种既能够达到黑盒方法预测准确性,又允许结果解释的医疗成本预测方法 | 医疗保健成本预测及其影响因素 | 机器学习 | NA | 证据回归(EVREG) | 回归模型 | 医疗记录 | 使用了Tsuyama Chuo Hospital从2013年到2018年的日本健康记录 |
19976 | 2024-08-07 |
Real-Time Detection of Railway Track Component via One-Stage Deep Learning Networks
2020-Aug-03, Sensors (Basel, Switzerland)
DOI:10.3390/s20154325
PMID:32756365
|
research paper | 本文提出了一系列单阶段深度学习方法,用于实时检测铁路轨道关键部件,如轨道、螺栓和夹子。 | 采用YOLOv2模型,实现了93%的平均精度均值(mAP)和35张图像每秒(IPS)的检测速度。 | 较大的输入尺寸虽然提高了检测精度,但增加了推理时间。 | 提高铁路轨道检查的准确性和速度。 | 铁路轨道的关键部件,包括轨道、螺栓和夹子。 | computer vision | NA | 深度学习 | YOLOv2, FPN | image | NA |
19977 | 2024-08-07 |
Current Status and Future Perspectives of Artificial Intelligence in Magnetic Resonance Breast Imaging
2020, Contrast media & molecular imaging
DOI:10.1155/2020/6805710
PMID:32934610
|
综述 | 本文综述了人工智能(AI)和深度学习(DL)在乳腺磁共振成像(MRI)中的当前状态和未来展望 | 强调了开发用于精准医学的定量影像生物标志物的重要性,以及乳腺MRI和DL在此方面的潜力 | 讨论了DL在乳腺MRI应用中的未来挑战 | 提供AI在乳腺MRI中当前状态和未来展望的全面图景 | 乳腺MRI中的AI和DL应用 | 计算机视觉 | NA | 深度学习 | DL | 影像 | NA |
19978 | 2024-08-07 |
A Deep Network Model on Dynamic Functional Connectivity With Applications to Gender Classification and Intelligence Prediction
2020, Frontiers in neuroscience
IF:3.2Q2
DOI:10.3389/fnins.2020.00881
PMID:33013292
|
研究论文 | 本文提出了一种结合卷积神经网络(CNN)和长短期记忆网络(LSTM)的端到端深度学习模型,用于捕捉功能连接序列的时空特征,并应用于性别分类和智力预测任务 | 该模型能够同时捕捉功能连接序列的时空特征,并在性别分类和智力预测任务中显著优于先前报告的模型 | NA | 研究动态功能脑网络的动态特性与个体行为和认知特征之间的关系 | 功能脑网络的动态特性 | 机器学习 | NA | fMRI | CNN 和 LSTM | 功能连接序列 | 1,050 名参与者(人类连接组计划) |
19979 | 2024-08-07 |
Using deep learning to probe the neural code for images in primary visual cortex
2019-04-01, Journal of vision
IF:2.0Q2
DOI:10.1167/19.4.29
PMID:31026016
|
研究论文 | 本研究利用深度卷积神经网络预测初级视觉皮层(V1)神经元对自然图像刺激的放电率 | 本研究首次使用深度卷积神经网络预测V1神经元对自然图像刺激的放电率,并发现预测结果与实际放电率高度相关 | 研究仅限于预测V1神经元的放电率,未涉及更深层次的视觉信息处理机制 | 旨在填补对V1如何编码图像的理解中的重要空白 | 初级视觉皮层(V1)神经元对自然图像刺激的响应 | 计算机视觉 | NA | 深度学习 | CNN | 图像 | 355个神经元 |
19980 | 2024-08-04 |
Machine learning for high-precision simulation of dissolved organic matter in sewer: Overcoming data restrictions with generative adversarial networks
2024-Oct-15, The Science of the total environment
DOI:10.1016/j.scitotenv.2024.174469
PMID:38972419
|
研究论文 | 本研究建立了一种新框架,结合生成对抗网络和机器学习模型,以提高污水中溶解有机物转化过程的模拟精度 | 提出了一种整合生成对抗网络算法与机器学习模型的框架,以克服数据限制带来的缺陷 | 模型的准确性受到数据限制的限制 | 研究污水中溶解有机物的转化过程及其管理策略 | 污水中的溶解有机物的转化过程 | 机器学习 | NA | 生成对抗网络 | 集成模型 | 虚拟数据集 | 1000个样本 |