本数据库通过收集和整理最新科研文献信息而得,供了解领域前沿进展之用。数据源自 PubMed Data ,每日自动更新,已收录文献数量参见 统计表格。表格内容由 GPT 自动整理,可能存在错误或遗漏,请使用时务必注意核实!
如有建议或合作意向,欢迎联系 linlin.yan(AT)bioinfo.app 或 微信 yanlinlin82。本项目遵循 MIT 许可 发布,欢迎下载 源码 自行修改使用。如觉得不错,还请不吝 给我打赏,你的支持是我继续创新的重要动力!
除通过在线浏览外,为方便用户离线查阅,本站也提供 付费下载(定价10元)。之所以考虑收费,是因为批量扫描这些文献并整理也是有一定成本的,还请理解并多多支持。本站数据会持续更新,而仅需一次付费,未来就可以随时重新下载到最新版本数据。
序号 | 推送日期 | 文章 | 类型 | 简述 | 创新点 | 不足 | 研究目的 | 研究对象 | 领域 | 病种 | 技术 | 模型 | 数据类型 | 样本量 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
4081 | 2025-03-26 |
Classification of cervical cancer using Dense CapsNet with Seg-UNet and denoising autoencoders
2024-12-30, Scientific reports
IF:3.8Q1
DOI:10.1038/s41598-024-82489-2
PMID:39738568
|
research paper | 该研究提出了一种结合多种深度学习方法的宫颈癌分类系统,以提高传统诊断过程的准确性 | 结合了四种不同的深度学习方法,包括Seg-UNet、去噪自编码器和Dense CapsNet,并在多阶段处理中应用,实现了99.65%的分类准确率 | 未提及样本量是否足够大以验证模型的泛化能力,且未讨论在实际临床环境中的应用效果 | 提高宫颈癌的分类准确率,以辅助早期诊断和治疗 | 宫颈癌图像数据 | digital pathology | cervical cancer | Multi-modal Generative Adversarial Networks (m-GAN), denoising autoencoders | Seg-UNet, Dense CapsNet | image | SIPaKMeD数据集(具体样本量未提及) |
4082 | 2025-03-26 |
Automatic ovarian follicle detection using object detection models
2024-12-30, Scientific reports
IF:3.8Q1
DOI:10.1038/s41598-024-82904-8
PMID:39738599
|
研究论文 | 本研究利用深度学习模型自动检测卵巢组织切片中的卵泡和黄体,以提高计数效率和准确性 | 采用YOLO和RetinaNet两种单阶段目标检测模型,结合迁移学习、早停策略和数据增强技术提升模型泛化能力,并利用采样策略和焦点损失函数解决类别不平衡问题 | 仅使用1000张图像进行训练和验证,样本量较小 | 开发自动化方法以准确量化评估卵泡发生后期阶段(窦卵泡和黄体形成) | 卵巢组织切片中的窦卵泡和黄体 | 数字病理学 | 生殖系统疾病 | 深度学习 | YOLO, RetinaNet | 图像 | 1000张卵巢组织切片图像 |
4083 | 2025-03-26 |
Dental bur detection system based on asymmetric double convolution and adaptive feature fusion
2024-12-30, Scientific reports
IF:3.8Q1
DOI:10.1038/s41598-024-83241-6
PMID:39738621
|
research paper | 该研究提出了一种基于非对称双卷积和自适应特征融合的牙科钻头检测系统,旨在提高微小、细长且产量大的牙科钻头的检测精度 | 引入了YOLO-DB深度学习方法和轻量级非对称双卷积模块(LADC),以及结合SlimNeck与BiFPN-Concat的新型融合网络,显著提升了检测精度和效率 | 未提及具体的数据集规模或实际应用场景的测试限制 | 提高牙科钻头的检测和计数精度,为细长物体的精确检测提供新方法 | 牙科钻头 | computer vision | NA | 深度学习 | YOLO-DB, LADC, SlimNeck, BiFPN-Concat | image | NA |
4084 | 2025-03-26 |
Peptidomics and Machine Learning-based Evaluation of Noncoding RNA-Derived Micropeptides in Breast Cancer: Expression Patterns and Functional/Therapeutic Insights
2024-12, Laboratory investigation; a journal of technical methods and pathology
DOI:10.1016/j.labinv.2024.102150
PMID:39393531
|
研究论文 | 本研究通过肽组学和机器学习方法评估了非编码RNA来源的微肽在乳腺癌中的表达模式及其功能与治疗潜力 | 首次大规模研究非编码RNA来源的微肽在乳腺癌亚型中的表达,并利用多种机器学习工具预测其功能和治疗潜力 | 研究主要基于预测工具的分析结果,需要进一步实验验证 | 探索非编码RNA来源的微肽在乳腺癌中的表达模式及其作为生物标志物和治疗靶点的潜力 | 乳腺癌组织样本和非肿瘤样本中的非编码RNA来源微肽 | 生物信息学 | 乳腺癌 | 高通量质谱分析 | AntiCP 2.0, MULocDeep, PEPstrMOD, Peptipedia, PreAIP | 质谱数据 | 16,349个预测微肽序列,58个在乳腺组织中表达的肽段 |
4085 | 2025-03-26 |
Artificial intelligence facial recognition of obstructive sleep apnea: a Bayesian meta-analysis
2024-Nov-30, Sleep & breathing = Schlaf & Atmung
DOI:10.1007/s11325-024-03173-3
PMID:39614959
|
meta-analysis | 该研究通过贝叶斯元分析评估了人工智能通过颅面照片诊断阻塞性睡眠呼吸暂停(OSA)的准确性 | 利用人工智能和颅面照片进行OSA诊断,提供了一种低成本且可及的筛查方法 | 研究仅包含6项研究,样本量相对较小,且未来需要更多基于智能手机图像的深度学习研究以提高可行性 | 评估人工智能通过颅面照片诊断OSA的准确性 | 成人(≥18岁)的颅面照片和OSA诊断数据 | 人工智能 | 阻塞性睡眠呼吸暂停 | 人工智能算法,特别是深度学习(卷积神经网络) | CNN | 图像(颅面照片) | 1,417名参与者用于训练,983名用于测试 |
4086 | 2025-03-26 |
Artificial intelligence-based model for the recurrence of hepatocellular carcinoma after liver transplantation
2024-11, Surgery
IF:3.2Q1
DOI:10.1016/j.surg.2024.07.039
PMID:39181726
|
research paper | 开发基于人工智能的深度学习模型,用于预测肝细胞癌患者接受活体肝移植后的复发风险 | 利用人工智能模型结合移植前因素和肿瘤分级,显著提高了肝细胞癌患者肝移植后复发风险的预测准确性 | 单中心回顾性研究,样本量较小(n=192),外部验证效果有待进一步确认 | 改进肝细胞癌患者肝移植的候选者选择标准 | 接受活体肝移植的肝细胞癌患者 | digital pathology | hepatocellular carcinoma | deep learning | AI-based model | clinical data | 192例接受活体肝移植的肝细胞癌患者(分为训练组和验证组) |
4087 | 2025-03-26 |
Spatial Heterogeneity of PD-1/PD-L1 Defined Osteosarcoma Microenvironments at Single-Cell Spatial Resolution
2024-11, Laboratory investigation; a journal of technical methods and pathology
DOI:10.1016/j.labinv.2024.102143
PMID:39321925
|
研究论文 | 本研究结合深度学习数字图像分析和多重荧光免疫组化技术,深入研究了骨肉瘤肿瘤微环境的空间异质性 | 引入了一种新的TAM/破骨细胞分化算法,并揭示了PD-1/PD-L1定义的患者中细胞组成和空间编排的异质性 | NA | 研究骨肉瘤肿瘤微环境中细胞亚型的空间编排及其在免疫治疗策略中的潜在应用 | 骨肉瘤肿瘤微环境中的肿瘤相关巨噬细胞(TAM)、T细胞、成骨细胞和破骨细胞 | 数字病理学 | 骨肉瘤 | 多重荧光免疫组化,深度学习 | 深度学习 | 图像 | NA |
4088 | 2025-03-26 |
Assessing the Tumor Immune Landscape Across Multiple Spatial Scales to Differentiate Immunotherapy Response in Metastatic Non-Small Cell Lung Cancer
2024-11, Laboratory investigation; a journal of technical methods and pathology
DOI:10.1016/j.labinv.2024.102148
PMID:39389312
|
研究论文 | 本研究利用多重荧光免疫组化技术,定量评估肿瘤与免疫细胞之间的相互作用,以识别转移性非小细胞肺癌患者对免疫检查点抑制剂反应的模式 | 引入了多种计算方法,首次应用于包含52名转移性非小细胞肺癌患者的1,269张多重荧光免疫组化图像数据集,并利用空间G-cross函数量化细胞间相互作用 | 样本量相对较小(52名患者),可能限制结果的普遍性 | 通过多空间尺度分析肿瘤免疫微环境,以区分转移性非小细胞肺癌患者对免疫治疗的反应 | 转移性非小细胞肺癌患者的肿瘤微环境 | 数字病理学 | 肺癌 | 多重荧光免疫组化 | 可解释的深度学习模型 | 图像 | 52名患者的1,269张多重荧光免疫组化图像 |
4089 | 2025-03-26 |
Prostate Cancer Risk Stratification in NRG Oncology Phase III Randomized Trials Using Multimodal Deep Learning With Digital Histopathology
2024-Oct, JCO precision oncology
IF:5.3Q1
DOI:10.1200/PO.24.00145
PMID:39447096
|
research paper | 本研究开发了一种基于多模态人工智能(MMAI)的前列腺癌风险分层系统,旨在改进当前NCCN风险分组的不足 | 利用数字组织病理学图像和临床数据构建的多模态人工智能模型,能够更准确地预测前列腺癌患者的转移风险 | 研究仅基于NRG Oncology的III期随机试验数据,可能无法完全代表更广泛的患者群体 | 开发一种临床可用的前列腺癌风险分层系统,以减少过度治疗和治疗不足的情况 | 9,787名局限性前列腺癌患者 | digital pathology | prostate cancer | multimodal artificial intelligence (MMAI) | deep learning | digital histopathology images and clinical data | 9,787 patients from eight NRG Oncology phase III trials |
4090 | 2024-09-10 |
Validation of a fully automated deep learning-enabled solution for CCTA atherosclerotic plaque and stenosis quantification in a diverse real-world cohort
2024 Sep-Oct, Journal of cardiovascular computed tomography
IF:5.5Q1
DOI:10.1016/j.jcct.2024.03.012
PMID:38553402
|
NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
4091 | 2025-03-26 |
An end-to-end deep learning pipeline to derive blood input with partial volume corrections for automated parametric brain PET mapping
2024-Aug-19, Biomedical physics & engineering express
IF:1.3Q3
DOI:10.1088/2057-1976/ad6a64
PMID:39094595
|
研究论文 | 提出一种端到端的深度学习流程,用于通过部分体积校正自动生成脑PET参数映射的血流输入函数 | 利用非侵入性深度学习方法从颈内动脉计算患者特异性血流输入函数,无需侵入性动脉采血 | 研究仅基于50例人脑FDG PET扫描进行训练和验证,样本量有限 | 开发非侵入性方法用于定量分析动态FDG-PET脑成像 | 人脑动态FDG-PET成像数据 | 数字病理 | 神经系统疾病 | dFDG-PET | 3D U-Net, RNN | 医学影像 | 50例人脑FDG PET扫描 |
4092 | 2025-03-26 |
Lung CT harmonization of paired reconstruction kernel images using generative adversarial networks
2024-Aug, Medical physics
IF:3.2Q1
DOI:10.1002/mp.17028
PMID:38530135
|
research paper | 该研究使用生成对抗网络(GAN)对肺部CT图像的重建核进行协调,以减少定量CT评估中的测量变异 | 采用pix2pix架构的GAN模型,首次在多厂商低剂量CT肺癌筛查队列中实现了重建核的协调转换 | 研究仅基于NLST数据集,样本量有限(1000对图像),且仅评估了五种核类型 | 减少CT重建核差异导致的定量测量偏差,提高CT图像分析的一致性 | 肺部CT图像 | digital pathology | lung cancer | CT imaging | GAN (pix2pix) | medical image | 1000对来自NLST的CT图像(5种核类型各200对) |
4093 | 2025-03-26 |
Mechanical evolution of metastatic cancer cells in three-dimensional microenvironment
2024-Jul-02, bioRxiv : the preprint server for biology
DOI:10.1101/2024.06.27.601015
PMID:39005477
|
research paper | 该研究利用光学布里渊显微镜在三维微环境中纵向获取癌细胞的机械图像,并通过机器学习算法提高癌细胞分类的准确性 | 首次在三维生理环境中使用光学布里渊显微镜获取癌细胞的机械图像,并利用深度学习管道仅通过布里渊图像准确区分癌性球体和正常球体 | 研究仅针对癌性球体和正常球体,未涉及更复杂的肿瘤微环境或不同类型的癌细胞 | 探究癌细胞在三维微环境中的机械演化及其在癌症分类和检测中的潜在应用 | 癌细胞和正常细胞的三维球体 | 生物医学工程 | 癌症 | 光学布里渊显微镜 | 深度学习 | 图像 | 八天内生长的癌性球体 |
4094 | 2025-03-26 |
Deep learning based detection of osteophytes in radiographs and magnetic resonance imagings of the knee using 2D and 3D morphology
2024-07, Journal of orthopaedic research : official publication of the Orthopaedic Research Society
IF:2.1Q2
DOI:10.1002/jor.25800
PMID:38323840
|
research paper | 本研究探讨了基于深度学习的2D和3D形态学方法在X射线和MRI数据中自动检测膝关节骨赘的能力 | 开发了深度学习模型用于X射线和MRI数据的骨赘检测,并分析了软组织对检测结果的混杂效应 | 需要进一步开发骨赘评估标准,特别是针对早期骨赘变化 | 自动检测膝关节骨赘 | 膝关节X射线和MRI数据 | digital pathology | geriatric disease | X-ray, MRI | DL | image | NA |
4095 | 2025-03-26 |
Histopathology Based AI Model Predicts Anti-Angiogenic Therapy Response in Renal Cancer Clinical Trial
2024-May-28, ArXiv
PMID:38855551
|
研究论文 | 本文提出了一种基于深度学习的模型,通过组织病理学切片预测肾癌抗血管生成治疗的响应 | 开发了一种新型深度学习模型,能够从组织病理学切片预测RNA基础的Angioscore,并生成可视化的血管网络以提高模型的可解释性 | ccRCC肿瘤具有高度异质性,且多区域测序在实际操作中存在困难 | 预测转移性透明细胞肾细胞癌(ccRCC)对抗血管生成治疗的响应 | 转移性透明细胞肾细胞癌(ccRCC)患者 | 数字病理学 | 肾癌 | 深度学习 | DL(深度学习模型) | 组织病理学图像 | 多个队列包括临床试验数据集 |
4096 | 2025-03-26 |
Autosurv: interpretable deep learning framework for cancer survival analysis incorporating clinical and multi-omics data
2024-Jan-05, NPJ precision oncology
IF:6.8Q1
DOI:10.1038/s41698-023-00494-6
PMID:38182734
|
研究论文 | 开发了一个名为Autosurv的可解释深度学习框架,用于结合临床和多组学数据进行癌症生存分析 | 结合多组学数据和临床信息进行癌症预后预测,并提供了模型解释方法以揭示重要特征 | 部分识别出的特征的重要性仅得到先前研究的部分支持 | 优化癌症患者的治疗计划并提高生活质量 | 乳腺癌和卵巢癌患者 | 机器学习 | 乳腺癌, 卵巢癌 | 多组学数据分析 | 深度学习框架 | 基因表达数据, miRNA表达数据, 临床数据 | 多个独立的多组学数据集 |
4097 | 2025-03-26 |
DLAAD-deep learning algorithms assisted diagnosis of chest disease using radiographic medical images
2024, Frontiers in medicine
IF:3.1Q1
DOI:10.3389/fmed.2024.1511389
PMID:40124976
|
研究论文 | 本研究开发了一种基于深度学习的算法,用于通过胸部X光图像辅助诊断胸部疾病 | 应用深度学习算法提升胸部疾病诊断的准确性和效率,整合现代技术到医疗设备中 | 数据集仅包含5,863张胸部X光图像,且仅分为肺炎和正常两类,可能限制了模型的泛化能力 | 提高计算机辅助诊断系统(CADs)在胸部疾病诊断中的效率和准确性 | 胸部X光图像 | 计算机视觉 | 肺炎 | 迁移学习 | MobileNetV2, VGG-16, ResNet50V2 | 图像 | 5,863张胸部X光图像 |
4098 | 2025-03-26 |
Deep Learning Methods for Omics Data Imputation
2023-Oct-07, Biology
DOI:10.3390/biology12101313
PMID:37887023
|
综述 | 本文综述了基于深度学习的组学数据插补方法,重点讨论了自编码器、变分自编码器、生成对抗网络和Transformer等深度生成模型架构在多组学数据插补中的应用 | 全面概述了当前可用的基于深度学习的组学数据插补方法,并探讨了深度学习在该领域带来的机遇和挑战 | 未提及具体的实验验证或实际应用案例 | 解决组学数据分析中的缺失值问题 | 组学数据 | 机器学习 | NA | NA | 自编码器、变分自编码器、生成对抗网络、Transformer | 组学数据 | NA |
4099 | 2025-03-26 |
CLCLSA: Cross-omics Linked embedding with Contrastive Learning and Self Attention for multi-omics integration with incomplete multi-omics data
2023-May-02, Research square
DOI:10.21203/rs.3.rs-2768563/v1
PMID:37205427
|
research paper | 提出一种名为CLCLSA的深度学习方法,用于处理不完整多组学数据的整合问题 | 结合跨组学链接嵌入、对比学习和自注意力机制,动态识别多组学数据中最具信息量的特征 | 需要完整的多组学数据作为监督,可能在某些实际应用中受限 | 解决不完整多组学数据整合问题,提高疾病和表型理解的全面性 | 多组学数据 | machine learning | NA | multi-omics integration | autoencoders, contrastive learning, self-attention | multi-omics data | 四个公共多组学数据集 |
4100 | 2025-03-26 |
Discovery of a cryptic pocket in the AI-predicted structure of PPM1D phosphatase explains the binding site and potency of its allosteric inhibitors
2023-Mar-24, bioRxiv : the preprint server for biology
DOI:10.1101/2023.03.22.533829
PMID:36993233
|
研究论文 | 本文通过分子动力学模拟和深度学习技术,揭示了PPM1D磷酸酶中的一个隐秘结合口袋,解释了其变构抑制剂的结合位点和效力 | 利用AlphaFold预测结构和分子动力学模拟发现PPM1D中的隐秘结合口袋,并通过深度学习预测化合物结合姿态,提高了虚拟筛选的预测能力 | 研究依赖于预测结构和模拟数据,缺乏实验验证 | 探索蛋白质动力学在虚拟筛选中的应用,提高药物发现的预测能力 | PPM1D/Wip1磷酸酶及其变构抑制剂 | 计算生物学 | 癌症 | 分子动力学模拟, 深度学习, 虚拟筛选 | AlphaFold, 马尔可夫状态模型(MSM) | 蛋白质结构数据, 分子动力学模拟数据 | NA |