本数据库通过收集和整理最新科研文献信息而得,供了解领域前沿进展之用。数据源自 PubMed Data ,每日自动更新(使用关键词“['deep learning']”过滤),已收录文献数量参见 统计表格。表格内容由 GPT 自动整理,可能存在错误或遗漏,请使用时务必注意核实!
如有建议或合作意向,欢迎联系 linlin.yan(AT)bioinfo.app 或 微信 yanlinlin82。本项目遵循 MIT 许可 发布,欢迎下载 源码 自行修改使用。如觉得不错,还请不吝 给我打赏,你的支持是我继续创新的重要动力!


除通过在线浏览外,为方便用户离线查阅,本站也提供 付费下载(定价19.9元)。之所以考虑收费,是因为批量扫描这些文献并整理也是有一定成本的,还请理解并多多支持。本站数据会持续更新,而仅需一次付费,未来就可以随时重新下载到最新版本数据。
| 序号 | 推送日期 | 文章 | 类型 | 简述 | 创新点 | 不足 | 研究目的 | 研究对象 | 领域 | 病种 | 技术 | 模型 | 数据类型 | 样本量 | 算法框架 | 模型架构 | 性能指标 | 计算资源 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 4341 | 2025-12-24 |
A physics-informed deep learning model for MRI brain motion correction
2025-Dec, Medical physics
IF:3.2Q1
DOI:10.1002/mp.70197
PMID:41395855
|
研究论文 | 本研究提出了一种名为PI-MoCoNet的物理信息深度学习方法,用于校正高分辨率脑部MRI图像中的运动伪影 | 提出了一种新颖的物理信息运动校正网络,该网络利用空间域和k空间域的互补信息,无需显式运动参数估计即可鲁棒地去除运动伪影 | 未在真实临床环境中进行大规模验证,运动伪影是通过模拟随机刚性变换生成的 | 开发并评估一种用于MRI脑部图像运动校正的深度学习模型,以提高图像质量和诊断可靠性 | 高分辨率脑部MRI图像 | 计算机视觉 | NA | 磁共振成像 | CNN, Transformer | 图像 | 两个公共数据集(IXI和MR-ART) | PyTorch | U-Net, Swin Transformer | 峰值信噪比, 结构相似性指数, 归一化均方误差 | NA |
| 4342 | 2025-12-24 |
Automated Joint Space Detection Improves Bone Segmentation Accuracy
2025-Nov-28, Journal of visualized experiments : JoVE
DOI:10.3791/69252
PMID:41396972
|
研究论文 | 本文提出了一种基于深度学习的自动化关节间隙检测方法,用于提高小鼠爪部骨骼分割的准确性 | 在先前半自动标记分水岭算法基础上,引入了结构增强、张量投票和输出膨胀技术,并结合3D U-Net架构与ResNet-18骨干网络进行关节间隙预测 | 在疾病严重程度增加和年龄增长的小鼠样本中,分割准确性会下降,表明模型对病变和新型数据集的适应性有限 | 开发自动化图像分析方法以量化复杂解剖结构,减少人工分割的需求和观察者间差异 | 野生型和肿瘤坏死因子转基因小鼠的后爪和前爪微CT图像数据集 | 计算机视觉 | 炎症性侵蚀性关节炎 | 微计算机断层扫描 | CNN | 图像 | 野生型和肿瘤坏死因子转基因小鼠的后爪和前爪数据集,涵盖不同年龄和性别 | NA | 3D U-Net, ResNet-18 | 准确性 | NA |
| 4343 | 2025-12-24 |
Deep Learning for Autonomous Surgical Guidance Using 3-Dimensional Images From Forward-Viewing Endoscopic Optical Coherence Tomography
2025-Nov, Journal of biophotonics
IF:2.0Q3
DOI:10.1002/jbio.202500181
PMID:40709742
|
研究论文 | 本文开发了一种三维卷积神经网络(3D-CNN),用于分析体积光学相干断层扫描(OCT)图像,以增强经皮肾造口术中的内窥镜引导 | 开发了一种专为体积OCT图像设计的3D-CNN模型,在实时手术引导应用中表现出较低的推理延迟,优于其他先进的体积架构 | 研究仅基于10个猪肾脏的数据集进行,样本规模较小,可能限制模型的泛化能力 | 增强经皮肾造口术中的内窥镜引导,实现计算机辅助诊断 | 猪肾脏的3D OCT图像 | 计算机视觉 | 肾脏疾病 | 光学相干断层扫描(OCT) | 3D-CNN, 3D Vision Transformer, 3D-DenseNet121, Multi-plane and Multi-slice Transformer | 3D图像 | 10个猪肾脏 | NA | 3D-CNN, 3D-ViT, 3D-DenseNet121, M3T | 准确率, 推理延迟 | NA |
| 4344 | 2025-12-24 |
Deep Learning-Based Uroflowmetry Curve Analysis Improves the Noninvasive Diagnosis of Lower Urinary Tract Symptoms
2025-11, International neurourology journal
IF:1.8Q3
DOI:10.5213/inj.2550266.133
PMID:41355259
|
研究论文 | 本研究评估了基于人工智能的尿流率曲线图像分析,通过定制预处理技术提高膀胱出口梗阻和逼尿肌活动不足的诊断准确性 | 开发了结合去噪、裁剪、轴缩放和临床参数颜色编码的定制预处理流程,以增强VGG16模型在尿流率曲线分析中的性能 | 研究为回顾性分析,样本量有限(2,579张图像),且仅基于单一医疗中心的数据 | 提高下尿路症状的非侵入性诊断准确性,特别是膀胱出口梗阻和逼尿肌活动不足的识别 | 接受尿动力学研究的患者尿流率曲线图像 | 数字病理学 | 下尿路症状 | 尿流率测定 | CNN | 图像 | 2,579张尿流率曲线图像(725例正常,1,854例异常:736例膀胱出口梗阻,1,387例逼尿肌活动不足) | TensorFlow, Keras | VGG16 | AUROC | NA |
| 4345 | 2025-12-24 |
Deep learning of thermodynamic laws from microscopic dynamics
2025-Nov, Physical review. E
DOI:10.1103/p2z8-j69p
PMID:41430901
|
研究论文 | 本研究通过深度神经网络从微观动力学数据中学习宏观热力学定律 | 利用深度神经网络从微观粒子图像数据中自动推导出与热力学公理一致的宏观物理定律,展示了机器学习在跨尺度物理规律发现中的潜力 | 研究基于数值模拟生成的理想气体绝热过程数据,尚未验证在更复杂系统或实验数据中的适用性 | 探索机器学习从微观尺度数据中发现宏观物理定律的能力 | 气体粒子在绝热过程中的微观动力学 | 机器学习 | NA | 分子动力学模拟 | 深度神经网络 | 图像 | NA | NA | NA | NA | NA |
| 4346 | 2025-12-24 |
Deep Learning Strategies for Predicting Amputation Free Survival in Patients with Peripheral Artery Disease
2025-Oct-26, European journal of vascular and endovascular surgery : the official journal of the European Society for Vascular Surgery
IF:5.7Q1
DOI:10.1016/j.ejvs.2025.10.043
PMID:41151636
|
研究论文 | 本研究旨在通过比较多种生存机器学习模型,改进传统Cox比例风险模型在预测外周动脉疾病患者无截肢生存期方面的局限性 | 首次系统性地将多种非竞争风险和竞争风险机器学习模型应用于外周动脉疾病患者的无截肢生存期预测,并开发了患者特异性风险分层工具 | 需要外部验证才能应用于临床实践,且数据集来自单一医院,可能存在选择偏倚 | 评估机器学习模型在预测外周动脉疾病患者无截肢生存期方面的性能,并开发临床决策支持工具 | 外周动脉疾病患者 | 机器学习 | 心血管疾病 | 生存分析 | Cox比例风险模型, 条件生存森林, 随机生存森林, 非线性Cox比例风险模型, Fine and Gray次分布风险模型, DeepHit模型 | 临床数据, 生物学数据, 手术信息 | 2366名有症状的外周动脉疾病患者 | NA | 条件生存森林, 随机生存森林, DeepHit | 一致性指数, 综合Brier分数 | NA |
| 4347 | 2025-04-16 |
Authors' Reply: "Deep Learning for Staging Periodontitis Using Panoramic Radiographs"
2025-Oct, Oral diseases
IF:2.9Q1
DOI:10.1111/odi.15348
PMID:40231655
|
NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
| 4348 | 2025-07-02 |
Comment on "Deep Learning for Staging Periodontitis Using Panoramic Radiographs"
2025-Oct, Oral diseases
IF:2.9Q1
DOI:10.1111/odi.15347
PMID:40589414
|
NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
| 4349 | 2025-12-24 |
Bimodal ECG and PCG Cardiovascular Disease Detection: Exploring the Potential and Modality Contribution
2025-Sep-12, Journal of medical systems
IF:3.5Q2
DOI:10.1007/s10916-025-02245-5
PMID:40938506
|
研究论文 | 本文提出了一种结合心电图(ECG)和心音图(PCG)的双模态深度学习模型,用于增强心血管疾病的早期检测 | 提出了一种新颖的双模态深度学习模型,通过微调在大规模音频数据上预训练的CNN来处理PCG信号,并采用晚期融合策略整合ECG和PCG分支,显著提升了心血管疾病的检测性能 | 研究受限于公开可用的双模态数据集数量较少,仅使用了MITHSDB数据集的增强版本,未来需要更大、更多样化的双模态数据集进行验证 | 增强心血管疾病的早期检测能力 | 心电图(ECG)和心音图(PCG)信号 | 机器学习 | 心血管疾病 | ECG和PCG信号采集 | CNN | 时序信号(ECG和PCG) | 基于MITHSDB数据集的增强版本(具体数量未明确说明) | NA | 1D-CNN | AUROC | NA |
| 4350 | 2025-12-24 |
ProtoECGNet: Case-Based Interpretable Deep Learning for Multi-Label ECG Classification with Contrastive Learning
2025-Aug-12, ArXiv
PMID:40395940
|
研究论文 | 提出了一种基于原型推理的可解释深度学习模型ProtoECGNet,用于多标签心电图分类,并提供基于病例的解释 | 提出了一种结构化多分支架构,模拟临床解读流程,并引入了一种新颖的对比损失函数,用于处理多标签学习中无关类别的原型分离与共现诊断的原型聚类 | NA | 开发一种透明且可信的深度学习模型,用于临床决策支持中的多标签心电图分类 | 心电图信号 | 机器学习 | 心血管疾病 | 深度学习 | CNN | 时间序列数据 | PTB-XL数据集中的所有71个标签 | NA | 1D CNN, 2D CNN | NA | NA |
| 4351 | 2025-12-24 |
LPD-Net: A Lightweight and Efficient Deep Learning Model for Accurate Colorectal Polyp Segmentation
2025-Jul, Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Annual International Conference
DOI:10.1109/EMBC58623.2025.11254269
PMID:41337006
|
研究论文 | 本文提出了一种轻量高效的深度学习模型LPD-Net,用于精确的结直肠息肉分割,以辅助结直肠癌的早期检测 | LPD-Net通过优化网络架构、减少残差块数量以及利用深度可分离卷积和逐点卷积,在保持高分割精度的同时显著降低了计算复杂度,是DUCK-Net的轻量高效替代方案 | NA | 开发一种轻量高效的深度学习模型,用于实时临床环境中的结直肠息肉分割,以克服现有模型计算量大、不适用于资源有限场景的问题 | 结直肠息肉 | 计算机视觉 | 结直肠癌 | NA | CNN | 图像 | NA | NA | LPD-Net | NA | NA |
| 4352 | 2025-12-24 |
Power-to-power cross-frequency coupling as a novel approach for temporal lobe seizure detection and analysis
2025-Jun-03, bioRxiv : the preprint server for biology
DOI:10.1101/2025.05.31.657189
PMID:40501876
|
研究论文 | 本研究评估了功率-功率跨频耦合(CFC)方法在颅内脑电图(iEEG)中检测颞叶癫痫(TLE)发作的能力,并分析了三种常见发作成分的CFC特征 | 提出使用功率-功率跨频耦合(CFC)作为颞叶癫痫发作检测的新方法,并首次对三种常见发作成分(尖波、尖波上的涟漪、振荡上的涟漪)进行CFC分析 | 研究仅基于26名患者的120次颞叶癫痫发作数据,样本量相对较小,且仅使用颅内脑电图数据,可能限制了结果的普适性 | 评估功率-功率跨频耦合(CFC)方法在颞叶癫痫发作检测中的有效性,并分析不同发作成分的CFC特征 | 颞叶癫痫患者的颅内脑电图记录,包括发作段和背景活动段 | 机器学习 | 癫痫 | 颅内脑电图(iEEG),功率-功率跨频耦合(CFC)分析 | SSAE, LSTM | 脑电图信号 | 26名患者的120次颞叶癫痫发作记录及背景活动段 | EEGLAB | 堆叠稀疏自编码器(SSAE),长短期记忆网络(LSTM) | 灵敏度, 特异度, 准确率 | NA |
| 4353 | 2025-12-24 |
Optimizing credit card fraud detection with random forests and SMOTE
2025-May-22, Scientific reports
IF:3.8Q1
DOI:10.1038/s41598-025-00873-y
PMID:40404766
|
研究论文 | 本文提出了一种基于机器学习的系统,用于检测信用卡欺诈交易,并比较了多种机器学习模型在高度不平衡数据集上的性能 | 在高度不平衡的信用卡欺诈数据集上,结合使用SMOTE技术处理类别不平衡问题,并系统比较了深度学习模型与传统机器学习模型(如决策树、Adaboost)的性能,发现随机森林模型在欺诈检测中表现最优 | 研究主要基于公开的UCI数据集,可能无法完全代表实时金融交易环境的复杂性和动态变化;深度学习模型(ANN)在此特定任务中的表现未超越某些传统机器学习模型 | 优化信用卡欺诈检测方法,通过比较不同机器学习与深度学习模型,识别提升预测准确性的关键参数,以增强金融欺诈预防机制 | 信用卡交易数据,特别是欺诈性交易 | 机器学习 | NA | 合成少数类过采样技术(SMOTE),探索性数据分析(EDA) | 决策树(DT),Adaboost,人工神经网络(ANN),逻辑回归,随机森林 | 表格数据(信用卡交易记录) | 来自UCI机器学习仓库的信用卡客户数据集(欺诈交易占比小于0.2%) | NA | NA | 准确率,召回率 | NA |
| 4354 | 2025-12-24 |
Automated Joint Space Detection Improves Bone Segmentation Accuracy
2025-May-06, bioRxiv : the preprint server for biology
DOI:10.1101/2025.04.30.651481
PMID:40654621
|
研究论文 | 本研究开发了一种基于深度学习的自动化关节间隙检测方法,用于提高小鼠爪骨分割的准确性 | 通过引入结构增强、张量投票和输出膨胀技术,结合3D U-Net和ResNet-18架构的深度学习模型,显著提升了关节间隙检测和骨分割的精度 | 在疾病严重程度增加和年龄增长的小鼠中,模型性能有所下降,特别是在关节炎严重的前爪数据集中表现受限 | 开发自动化图像分析技术,以克服手动分割的挑战,提高复杂解剖结构的定量描述准确性 | 小鼠后爪和前爪的微计算机断层扫描数据集,包括野生型和肿瘤坏死因子转基因小鼠 | 计算机视觉 | 关节炎 | 微计算机断层扫描 | CNN | 图像 | 包括野生型和肿瘤坏死因子转基因小鼠的后爪和前爪数据集,测试组涉及52.4%的后爪样本 | NA | 3D U-Net, ResNet-18 | 分割准确率 | NA |
| 4355 | 2025-12-24 |
A Physics-Informed Deep Learning Model for MRI Brain Motion Correction
2025-Feb-13, ArXiv
PMID:39990792
|
研究论文 | 本文提出了一种名为PI-MoCoNet的物理信息深度学习模型,用于MRI脑部图像的运动伪影校正 | 提出了一种新颖的物理信息运动校正网络,该网络利用空间域和k空间域的互补信息,无需显式运动参数估计即可鲁棒地去除高分辨率脑部MRI图像中的运动伪影 | 运动伪影是通过对相位编码线施加随机刚性变换来模拟的,可能无法完全覆盖所有真实临床场景中的复杂运动模式 | 开发并评估一种用于MRI脑部图像运动伪影校正的深度学习模型,以提高图像质量和诊断可靠性 | 脑部MRI图像 | 计算机视觉 | NA | 磁共振成像 | 深度学习 | 图像 | 两个公共数据集(IXI和MR-ART) | PyTorch | U-net, Swin Transformer | 峰值信噪比, 结构相似性指数, 归一化均方误差 | NA |
| 4356 | 2025-12-24 |
RETRACTED: Optimization of house price evaluation model based on multi-source geographic big data and deep neural network
2025, PloS one
IF:2.9Q1
DOI:10.1371/journal.pone.0335722
PMID:41191568
|
研究论文 | 本文提出了一种基于多源地理大数据和深度神经网络的房价评估模型,通过集成注意力机制与空间特征提取,并利用蝙蝠优化算法提升模型的可解释性和准确性 | 提出了一种结合蝙蝠优化算法与注意力机制的混合深度学习网络,用于动态调整高影响力特征,解决了特征重要性不稳定、计算效率低和泛化能力差的问题,相比现有方法训练时间减少30% | 未明确说明模型在不同房地产市场环境下的泛化能力,也未讨论模型对数据质量和数据缺失的敏感性 | 优化房价评估模型,提高预测准确性、计算效率和模型可解释性 | 房地产价格数据 | 机器学习 | NA | 多源地理大数据分析 | 深度神经网络, 注意力机制 | 地理大数据 | NA | NA | 混合深度学习网络 | 特征稳定性, 人工参与更新时间, 平均绝对误差 | NA |
| 4357 | 2025-12-24 |
NDMamba: Dual-Prior State-Space Model for Nighttime Deraining
2025, IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
IF:10.8Q1
DOI:10.1109/TIP.2025.3633561
PMID:41269856
|
研究论文 | 提出一种名为NDMamba的双先验状态空间模型,用于解决夜间图像去雨问题 | 首次将Retinex理论与状态空间模型结合,通过双先验(光照和雨纹分布)引导的架构,更有效地建模夜间低光条件下雨纹与光照的交互 | 未明确说明模型在极端低光或动态光照变化场景下的性能,也未讨论模型对计算资源的具体需求 | 提升夜间图像去雨任务的性能,在计算效率和恢复质量之间取得更好平衡 | 夜间含雨图像 | 计算机视觉 | NA | 深度学习 | 状态空间模型 | 图像 | 未明确说明具体数量,但使用了合成和真实世界基准数据集 | 未明确说明,代码已公开在GitHub | NDMamba(包含Prior Extraction Module, Prior-Guided Mamba Block, Lighting-Adaptive Vision State-Space Module, Rain Distribution Guidance Module) | 未明确列出具体指标,但提及在基准数据集上优于现有方法 | NA |
| 4358 | 2025-12-24 |
Exploring voltage-gated sodium channel conformations and protein-protein interactions using AlphaFold2
2024-Oct-18, bioRxiv : the preprint server for biology
DOI:10.1101/2024.10.15.618559
PMID:39463944
|
研究论文 | 本研究利用AlphaFold2探索电压门控钠通道的多种构象,并评估AlphaFold Multimer在模拟钠通道α亚基与其蛋白质伴侣相互作用方面的准确性 | 首次系统性地将AlphaFold2应用于电压门控钠通道的构象采样,并利用改进的采样策略(子采样多序列比对和调整循环次数)发现了新的、实验尚未识别的构象状态和潜在中间态 | 研究依赖于计算模型预测,仍需实验验证新发现的构象状态;AlphaFold2在采样极端或罕见构象方面可能存在局限 | 探索深度学习模型AlphaFold2在采样电压门控钠通道构象及预测其蛋白质-蛋白质相互作用方面的能力 | 电压门控钠通道(Na通道)的α亚基、辅助β亚基和钙调蛋白 | 计算生物学, 结构生物信息学 | NA | AlphaFold2, AlphaFold Multimer, 冷冻电镜(作为背景参考) | 深度学习模型 | 蛋白质序列, 多序列比对 | NA | AlphaFold2, AlphaFold Multimer | AlphaFold2架构 | 准确性(与实验结构比较) | NA |
| 4359 | 2025-12-24 |
SPIN-CGNN: Improved fixed backbone protein design with contact map-based graph construction and contact graph neural network
2023-12, PLoS computational biology
IF:3.8Q1
DOI:10.1371/journal.pcbi.1011330
PMID:38060617
|
研究论文 | 本文提出了一种基于蛋白质接触图的图神经网络SPIN-CGNN,用于改进固定骨架蛋白质设计 | 引入了基于蛋白质接触图的最近邻图构建方法,结合辅助边更新和选择性核,提高了序列恢复率、困惑度等性能指标 | 深度学习设计的序列中的低复杂度区域,特别是针对生成结构,与天然序列相比仍有待改进 | 改进固定骨架蛋白质设计方法,提高序列推断的准确性和生物相关性 | 蛋白质结构和序列 | 机器学习 | NA | 蛋白质接触图 | 图神经网络 | 蛋白质结构数据 | NA | NA | GNN | 序列恢复率, 困惑度, 氨基酸组成偏差, 疏水位点保守性, 低复杂度区域 | NA |
| 4360 | 2025-12-24 |
Enhancing Breast Ultrasound Segmentation through Fine-tuning and Optimization Techniques: Sharp Attention UNet
2023-Jul-18, bioRxiv : the preprint server for biology
DOI:10.1101/2023.07.14.549040
PMID:37503223
|
研究论文 | 本文通过微调和优化技术增强乳腺超声图像分割,提出了Sharp Attention UNet模型 | 结合Sharp UNet和Attention UNet设计了一种新颖的Sharp Attention UNet模型,并在乳腺超声图像分割中应用了图像预处理、优化技术和微调方法的比较研究 | 未明确说明数据集的规模或多样性限制,也未提及模型在外部验证或临床环境中的泛化能力 | 评估图像预处理、不同优化技术以及微调对UNet分割模型性能的影响,并开发改进的乳腺病变分割算法 | 乳腺超声图像中的良性、恶性肿块区域以及无肿块区域 | 数字病理学 | 乳腺癌 | 超声成像 | CNN | 图像 | NA | NA | UNet, Sharp UNet, Attention UNet, Sharp Attention UNet | Dice系数, 特异性, 敏感性, F1分数 | NA |