本数据库通过收集和整理最新科研文献信息而得,供了解领域前沿进展之用。数据源自 PubMed Data ,每日自动更新,已收录文献数量参见 统计表格。表格内容由 GPT 自动整理,可能存在错误或遗漏,请使用时务必注意核实!
如有建议或合作意向,欢迎联系 linlin.yan(AT)bioinfo.app 或 微信 yanlinlin82。本项目遵循 MIT 许可 发布,欢迎下载 源码 自行修改使用。如觉得不错,还请不吝 给我打赏,你的支持是我继续创新的重要动力!
除通过在线浏览外,为方便用户离线查阅,本站也提供 付费下载(定价10元)。之所以考虑收费,是因为批量扫描这些文献并整理也是有一定成本的,还请理解并多多支持。本站数据会持续更新,而仅需一次付费,未来就可以随时重新下载到最新版本数据。
序号 | 推送日期 | 文章 | 类型 | 简述 | 创新点 | 不足 | 研究目的 | 研究对象 | 领域 | 病种 | 技术 | 模型 | 数据类型 | 样本量 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
6761 | 2025-02-21 |
Application of feed forward and recurrent neural networks in simulation of left ventricular mechanics
2020-12-18, Scientific reports
IF:3.8Q1
DOI:10.1038/s41598-020-79191-4
PMID:33339836
|
研究论文 | 本文探讨了使用前馈神经网络和循环神经网络(RNN)模拟左心室(LV)力学的方法,以替代传统有限元(FE)模型 | 提出使用深度学习(DL)进行左心室(LV)的计算机模拟,相较于传统有限元(FE)模型,显著减少了计算时间 | 研究仅基于有限数量的FE模型进行训练和测试,可能限制了模型的泛化能力 | 研究目的是开发一种能够实时提供左心室(LV)力学模拟的深度学习模型 | 左心室(LV)的压力和体积,以及心肌的应力 | 机器学习 | 心血管疾病 | 深度学习(DL) | 前馈神经网络和循环神经网络(RNN)与长短期记忆(LSTM) | 模拟数据 | 80个四腔心脏FE模型用于训练LV压力和体积,120个仅LV的FE模型用于训练LV应力预测 |
6762 | 2025-02-21 |
EEG-Based Emotion Classification Using Long Short-Term Memory Network with Attention Mechanism
2020-Nov-25, Sensors (Basel, Switzerland)
DOI:10.3390/s20236727
PMID:33255539
|
研究论文 | 本文提出了一种基于长短期记忆网络(LSTM)和注意力机制的脑电图(EEG)情感分类方法 | 结合LSTM网络和注意力机制,考虑情感信号随时间的变化,并基于心理学中的峰终规则对特定时刻的情感状态进行加权 | 未提及具体局限性 | 研究基于EEG信号的情感分类 | 32通道EEG数据 | 机器学习 | NA | 深度学习算法 | LSTM, CNN | EEG信号 | DEAP数据库中的32通道EEG数据 |
6763 | 2025-02-21 |
A Deep Machine Learning Method for Concurrent and Interleaved Human Activity Recognition
2020-Oct-12, Sensors (Basel, Switzerland)
DOI:10.3390/s20205770
PMID:33053720
|
研究论文 | 本文提出了一种使用双向长短期记忆网络(BiLSTM)和跳链条件随机场(SCCRF)的两阶段混合深度机器学习方法,用于识别并发和交错的人类活动 | 创新点在于结合了BiLSTM和SCCRF两种技术,分别用于识别并发和交错活动,提高了复杂活动识别的准确性 | 未提及具体局限性 | 研究目标是提高复杂人类活动识别的准确性,特别是在并发和交错活动的情况下 | 研究对象是人类活动,特别是并发和交错的活动 | 机器学习 | NA | 双向长短期记忆网络(BiLSTM),跳链条件随机场(SCCRF) | BiLSTM, SCCRF | 活动数据 | 使用了公开可用的智能家居环境数据集 |
6764 | 2025-02-21 |
Scheduling Sensor Duty Cycling Based on Event Detection Using Bi-Directional Long Short-Term Memory and Reinforcement Learning
2020-Sep-25, Sensors (Basel, Switzerland)
DOI:10.3390/s20195498
PMID:32992795
|
研究论文 | 本文提出了一种基于双向长短期记忆模型和强化学习的传感器任务调度方案,用于智能家居环境中的人类活动检测和传感器能量管理 | 结合双向长短期记忆模型和Q-Learning算法,预测未来事件并优化传感器任务调度,以提高活动检测精度和传感器能量效率 | 实验仅在模拟环境中进行,未涉及真实智能家居场景的验证 | 解决智能家居环境中人类活动检测和传感器能量消耗的挑战 | 智能家居环境中的传感器和人类活动 | 机器学习 | NA | 双向长短期记忆模型、Q-Learning算法、Jaccard相似性指数 | Bi-Directional LSTM、Q-Learning | 传感器数据 | NA |
6765 | 2025-02-21 |
Deep learning with long short-term memory networks for classification of dementia related travel patterns
2020-07, Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Annual International Conference
DOI:10.1109/EMBC44109.2020.9175472
PMID:33019238
|
研究论文 | 本文利用移动设备上的方向数据,通过深度学习与长短期记忆网络(LSTM)分类器识别与痴呆症相关的游走模式 | 首次将深度学习与LSTM网络应用于痴呆症相关游走模式的分类,相比传统机器学习方法表现更优 | 样本量较小,仅涉及14名受试者,可能影响模型的泛化能力 | 研究痴呆症相关游走模式的分类,以早期识别认知退化和其他健康状况 | 痴呆症患者的游走模式 | 机器学习 | 老年疾病 | 深度学习 | LSTM | 方向数据 | 14名受试者 |
6766 | 2025-02-21 |
EMG-Based Hand Gesture Classification with Long Short-Term Memory Deep Recurrent Neural Networks
2020-07, Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Annual International Conference
DOI:10.1109/EMBC44109.2020.9175279
PMID:33018710
|
研究论文 | 本文研究了基于长短期记忆(LSTM)深度循环神经网络在肌电图(EMG)手势分类中的有效性 | 使用LSTM神经网络处理EMG信号,捕捉肌肉收缩的时间依赖性,而传统方法主要关注空间相关性 | 研究仅针对九名截肢者,样本量较小,可能影响结果的普适性 | 探讨循环深度学习网络在EMG分类中的有效性,以改进上肢假肢的控制策略 | 九名截肢者在三种不同力量水平下生成的六种握持手势的EMG信号 | 机器学习 | NA | EMG信号处理 | LSTM | 时间序列数据 | 九名截肢者 |
6767 | 2025-02-21 |
Emotion Recognition with Refined Labels for Deep Learning
2020-07, Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Annual International Conference
DOI:10.1109/EMBC44109.2020.9176111
PMID:33017942
|
研究论文 | 本文提出了一种改进的情感识别方法,通过开发一种阈值方案,将连续的情感轨迹转换为时间上的三类注释,从而提高分类准确性 | 提出了一种新的阈值方案,将连续的情感轨迹转换为时间上的三类注释,解决了传统方法中固定注释导致分类准确性下降的问题 | 研究仅使用了MAHNOB-HCI数据集的一个子集,可能限制了结果的普适性 | 提高情感识别的分类准确性 | 情感识别 | 自然语言处理 | NA | LSTM网络 | LSTM | EEG信号和面部视频 | MAHNOB-HCI数据集的一个子集 |
6768 | 2025-02-21 |
Detection of patient-ventilator asynchrony from mechanical ventilation waveforms using a two-layer long short-term memory neural network
2020-05, Computers in biology and medicine
IF:7.0Q1
DOI:10.1016/j.compbiomed.2020.103721
PMID:32250853
|
研究论文 | 本文提出了一种使用两层长短期记忆(LSTM)神经网络从机械通气波形中检测患者-呼吸机异步(PVA)的方法 | 首次将深度学习技术应用于PVA检测,特别是使用两层LSTM网络来识别两种最常见的PVA类型 | 研究仅针对两种PVA类型(DT和IEE)进行了测试,未涵盖所有可能的PVA类型 | 提高患者-呼吸机异步(PVA)的自动检测效率,以改善患者与呼吸机的交互 | 机械通气波形数据 | 机器学习 | NA | 深度学习 | LSTM | 波形数据 | 两个数据集 |
6769 | 2025-02-21 |
Spatio-Temporal Abnormal Behavior Prediction in Elderly Persons Using Deep Learning Models
2020-Apr-21, Sensors (Basel, Switzerland)
DOI:10.3390/s20082359
PMID:32326349
|
研究论文 | 本文研究了多种深度学习模型用于识别和预测老年人异常行为 | 结合了时间信息和空间序列,使用多种深度学习模型进行异常行为预测 | 仅使用了两个公开数据集进行测试,可能缺乏广泛性 | 开发能够准确预测老年人异常行为的健康监测系统 | 老年人 | 机器学习 | 老年疾病 | 深度学习 | LSTM, CNN, CNN-LSTM, Autoencoder-CNN-LSTM | 时间序列数据,空间序列数据 | 两个公开数据集 |
6770 | 2025-02-21 |
A deep learning-based method for drug-target interaction prediction based on long short-term memory neural network
2020-03-18, BMC medical informatics and decision making
IF:3.3Q2
DOI:10.1186/s12911-020-1052-0
PMID:32183788
|
研究论文 | 本文提出了一种基于深度学习的药物-靶点相互作用预测方法,利用长短期记忆神经网络进行预测 | 首次在药物-靶点相互作用预测中测试了具有记忆和图灵完备性的深度学习方法的潜力 | 未明确提及具体局限性 | 开发有效的计算方法以验证药物与靶点之间的相互作用 | 药物-靶点相互作用 | 机器学习 | NA | PSSM, LM, SPCA, DeepLSTM | LSTM | 蛋白质进化特征和药物分子亚结构指纹 | 四类重要的药物-靶点数据集 |
6771 | 2025-02-21 |
Monitoring ICU Mortality Risk with A Long Short-Term Memory Recurrent Neural Network
2020, Pacific Symposium on Biocomputing. Pacific Symposium on Biocomputing
PMID:31797590
|
研究论文 | 本文提出了一种基于长短期记忆循环神经网络(LSTM)的动态监测ICU患者死亡风险的新框架 | 该框架使用词袋表示法处理相关医疗事件,并利用潜在语义分析(LSA)将患者状态编码为低维嵌入,进而通过LSTM网络进行死亡风险预测,相比现有严重程度评分系统SAPS-II表现更优 | 未提及具体样本量及数据缺失处理的具体细节 | 开发一种能够动态监测ICU患者死亡风险的预测模型,以提高医疗干预效果和临床资源分配效率 | ICU患者的电子健康记录(EHR) | 自然语言处理 | NA | 潜在语义分析(LSA) | 长短期记忆网络(LSTM) | 电子健康记录(EHR) | NA |
6772 | 2025-02-21 |
A Dual-Modal Attention-Enhanced Deep Learning Network for Quantification of Parkinson's Disease Characteristics
2020-01, IEEE transactions on neural systems and rehabilitation engineering : a publication of the IEEE Engineering in Medicine and Biology Society
IF:4.8Q1
DOI:10.1109/TNSRE.2019.2946194
PMID:31603824
|
研究论文 | 本文提出了一种双模态注意力增强的深度学习网络,用于量化帕金森病(PD)患者的步态特征 | 该研究不仅实现了PD步态与正常步行的二分类,还量化了PD步态以关联其与PD严重程度,采用了双模态深度学习模型,结合CNN和注意力增强的LSTM网络 | 需要合适的训练以确保模型的高置信度和准确性 | 开发一种计算机化工具,客观评估PD患者的步态 | 帕金森病患者的步态 | 机器学习 | 帕金森病 | 深度学习 | CNN, LSTM | 1D垂直地面反作用力(VGRF)信号 | NA |
6773 | 2025-02-21 |
Human Gait Recognition Based on Frame-by-Frame Gait Energy Images and Convolutional Long Short-Term Memory
2020-Jan, International journal of neural systems
IF:6.6Q1
DOI:10.1142/S0129065719500278
PMID:31747820
|
研究论文 | 本文提出了一种基于卷积长短期记忆网络(Conv-LSTM)和逐帧步态能量图像(ff-GEI)的新方法,用于提高步态识别的准确率 | 提出了一种新的步态能量图像变体ff-GEI,并设计了一种基于Conv-LSTM的步态识别模型,有效解决了跨视角步态识别的问题 | NA | 提高步态识别的准确率,特别是在无干扰视频监控和远距离人类识别中的应用 | 人类步态 | 计算机视觉 | NA | 深度学习 | Conv-LSTM | 视频 | CASIA Dataset B 和 OU-ISIR Large Population Dataset |
6774 | 2025-02-21 |
A Long Short-Term Memory neural network for the detection of epileptiform spikes and high frequency oscillations
2019-12-18, Scientific reports
IF:3.8Q1
DOI:10.1038/s41598-019-55861-w
PMID:31852929
|
研究论文 | 本文提出了一种用于检测癫痫样尖波和高频振荡的长短期记忆神经网络 | 使用长短期记忆神经网络自动检测颅内脑电图中的尖波、涟漪和尖波上的涟漪,提高了诊断价值 | 样本量相对较小,仅涉及12名患者的数据 | 开发一种自动化工具,用于分析颅内脑电图数据,以检测癫痫样尖波和高频振荡 | 癫痫患者的颅内脑电图数据 | 机器学习 | 癫痫 | 深度学习 | LSTM | 颅内脑电图(iEEG) | 12名患者的颅内脑电图数据 |
6775 | 2025-02-21 |
Interpretable, highly accurate brain decoding of subtly distinct brain states from functional MRI using intrinsic functional networks and long short-term memory recurrent neural networks
2019-11-15, NeuroImage
IF:4.7Q1
DOI:10.1016/j.neuroimage.2019.116059
PMID:31362049
|
研究论文 | 本文提出了一种基于深度学习的框架,利用内在功能网络建模和长短期记忆(LSTM)循环神经网络(RNNs)进行脑解码,以区分细微不同的脑状态 | 结合内在功能网络(FNs)和LSTM RNNs,构建了可解释且高精度的脑解码模型,显著提高了对细微不同工作记忆任务的区分能力 | 未明确提及具体限制,但可能包括对数据质量和数量的依赖,以及模型在不同任务上的泛化能力 | 开发一种高精度的脑解码方法,以区分细微不同的脑状态 | 功能性磁共振成像(fMRI)数据 | 机器学习 | NA | 功能性磁共振成像(fMRI),长短期记忆循环神经网络(LSTM RNNs) | LSTM RNNs | fMRI数据 | HCP数据集中的fMRI数据 |
6776 | 2025-02-21 |
A Review of Recurrent Neural Networks: LSTM Cells and Network Architectures
2019-07, Neural computation
IF:2.7Q3
DOI:10.1162/neco_a_01199
PMID:31113301
|
综述 | 本文回顾了循环神经网络(RNNs)中的长短期记忆(LSTM)单元及其变体,探讨了LSTM单元的学习能力,并将LSTM网络分为两大类:LSTM主导的网络和集成LSTM网络,并讨论了它们的各种应用 | 通过引入门函数到单元结构中,LSTM能够很好地处理长期依赖问题,几乎所有基于RNNs的激动人心的成果都是由LSTM实现的 | 本文主要集中于LSTM及其变体的回顾,未涉及其他类型的RNNs或更广泛的深度学习模型 | 探讨LSTM单元的学习能力及其在网络架构中的应用 | LSTM单元及其变体,LSTM主导的网络和集成LSTM网络 | 自然语言处理 | NA | NA | LSTM | 序列数据(如文本、音频、视频) | NA |
6777 | 2025-02-21 |
EEG-Based Emotion Recognition with Similarity Learning Network
2019-Jul, Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Annual International Conference
DOI:10.1109/EMBC.2019.8857499
PMID:31946110
|
研究论文 | 本文提出了一种基于双向长短期记忆网络(BLSTM)的相似性学习网络,用于基于EEG信号的情感识别 | 提出了结合成对约束损失和传统监督分类损失函数的相似性学习网络,显著提高了情感分类性能 | NA | 提高基于EEG信号的情感识别性能 | EEG信号 | 自然语言处理 | NA | NA | BLSTM | EEG信号 | SEED数据集 |
6778 | 2025-02-21 |
Decoding Movements from Cortical Ensemble Activity Using a Long Short-Term Memory Recurrent Network
2019-06, Neural computation
IF:2.7Q3
DOI:10.1162/neco_a_01189
PMID:30979355
|
研究论文 | 本文开发了一种基于长短期记忆(LSTM)的解码器,用于从猕猴执行运动任务时多个皮层区域的神经元群体活动中提取运动学信息 | 利用LSTM网络解码神经元群体活动,显著优于现有的无迹卡尔曼滤波器,并展示了LSTM单元模拟皮层神经元活动的多种生理特征 | 研究仅限于猕猴模型,尚未在人类患者中进行验证 | 改进脑机接口(BMI)解码器的设计,以恢复严重残疾患者的运动功能 | 猕猴的多个皮层区域的神经元群体活动 | 机器学习 | NA | LSTM | LSTM | 神经元活动数据 | 134-402个神经元,来自多个皮层区域 |
6779 | 2025-02-21 |
Baseball Player Behavior Classification System Using Long Short-Term Memory with Multimodal Features
2019-Mar-22, Sensors (Basel, Switzerland)
DOI:10.3390/s19061425
PMID:30909503
|
研究论文 | 本文提出了一种基于多模态特征和长短期记忆网络的棒球运动员行为分类系统 | 通过结合深度摄像头和多个惯性传感器的信号,提取时间变化的骨架向量投影和统计特征,并提出了基于深度学习的训练行为分类器方案 | NA | 开发一种能够准确识别棒球运动员行为的分类系统 | 棒球运动员的行为 | 计算机视觉 | NA | 深度学习 | LSTM | 图像和传感器信号 | NA |
6780 | 2025-02-21 |
fNIRS improves seizure detection in multimodal EEG-fNIRS recordings
2019-02, Journal of biomedical optics
IF:3.0Q2
DOI:10.1117/1.JBO.24.5.051408
PMID:30734544
|
研究论文 | 本文探讨了在癫痫监测中,结合功能性近红外光谱(fNIRS)与脑电图(EEG)的多模态数据,利用深度学习方法来提高癫痫发作检测的性能 | 本文的创新点在于首次将fNIRS与EEG结合,利用深度学习模型(LSTM)进行癫痫发作检测,并展示了多模态数据在提高检测性能方面的优势 | 研究的局限性在于样本量相对较小(40名难治性癫痫患者),且未在其他独立数据集上进行验证 | 研究目的是探索fNIRS与EEG结合的多模态数据在癫痫发作检测中的应用价值 | 研究对象为40名难治性癫痫患者的EEG和fNIRS数据 | 机器学习 | 癫痫 | 功能性近红外光谱(fNIRS)和脑电图(EEG) | 长短期记忆网络(LSTM) | 多模态数据(EEG和fNIRS) | 40名难治性癫痫患者的89次癫痫发作记录 |