本数据库通过收集和整理最新科研文献信息而得,供了解领域前沿进展之用。数据源自 PubMed Data ,每日自动更新,已收录文献数量参见 统计表格。表格内容由 GPT 自动整理,可能存在错误或遗漏,请使用时务必注意核实!
如有建议或合作意向,欢迎联系 linlin.yan(AT)bioinfo.app 或 微信 yanlinlin82。本项目遵循 MIT 许可 发布,欢迎下载 源码 自行修改使用。如觉得不错,还请不吝 给我打赏,你的支持是我继续创新的重要动力!
除通过在线浏览外,为方便用户离线查阅,本站也提供 付费下载(定价10元)。之所以考虑收费,是因为批量扫描这些文献并整理也是有一定成本的,还请理解并多多支持。本站数据会持续更新,而仅需一次付费,未来就可以随时重新下载到最新版本数据。
序号 | 推送日期 | 文章 | 类型 | 简述 | 创新点 | 不足 | 研究目的 | 研究对象 | 领域 | 病种 | 技术 | 模型 | 数据类型 | 样本量 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
6781 | 2025-02-21 |
BO-LSTM: classifying relations via long short-term memory networks along biomedical ontologies
2019-Jan-07, BMC bioinformatics
IF:2.9Q1
DOI:10.1186/s12859-018-2584-5
PMID:30616557
|
研究论文 | 本文提出了一种新的模型BO-LSTM,利用领域特定的本体来检测和分类文本中的关系,特别是在生物医学文本挖掘任务中 | BO-LSTM模型通过将每个实体表示为其在本体中的祖先序列,利用生物医学本体来提高关系检测和分类的性能 | 模型依赖于特定领域的本体,可能在其他领域或没有可用本体的任务中表现不佳 | 提高生物医学文本挖掘任务中关系检测和分类的准确性 | 药物-药物相互作用、基因与表型之间的关系 | 自然语言处理 | NA | 长短期记忆网络(LSTM) | BO-LSTM | 文本 | 792个药物描述和233篇科学摘要,以及228篇注释了基因与表型关系的摘要 |
6782 | 2025-02-21 |
Analysis and prediction of unplanned intensive care unit readmission using recurrent neural networks with long short-term memory
2019, PloS one
IF:2.9Q1
DOI:10.1371/journal.pone.0218942
PMID:31283759
|
研究论文 | 本文利用带有长短期记忆的循环神经网络分析和预测重症监护病房(ICU)非计划再入院情况 | 采用RNN与LSTM结合的方法,能够捕捉电子健康记录(EHRs)的多变量特征和图表事件特征的突然波动,提高了ICU再入院预测的敏感性和曲线下面积 | 未提及具体的研究局限性 | 提高ICU决策的准确性,实现医院精准医疗 | 重症监护病房(ICU)患者 | 机器学习 | NA | 监督机器学习 | RNN, LSTM | 临床数据 | MIMIC-III数据库中的综合纵向临床数据 |
6783 | 2025-02-21 |
A Stacked BiLSTM Neural Network Based on Coattention Mechanism for Question Answering
2019, Computational intelligence and neuroscience
DOI:10.1155/2019/9543490
PMID:31531011
|
研究论文 | 本文提出了一种基于共注意力机制的堆叠双向长短期记忆(BiLSTM)神经网络,用于问答系统中的语义交互提取 | 结合余弦相似度和欧几里得距离对问题和答案句子进行评分,以提高问答系统的性能 | 未提及具体局限性 | 提高问答系统的语义理解和交互能力 | 问答系统中的问题和答案 | 自然语言处理 | NA | 深度学习 | BiLSTM | 文本 | TREC 8-13数据集和Wiki-QA数据集 |
6784 | 2025-02-21 |
Mixed convolutional and long short-term memory network for the detection of lethal ventricular arrhythmia
2019, PloS one
IF:2.9Q1
DOI:10.1371/journal.pone.0216756
PMID:31107876
|
研究论文 | 本文提出了一种基于1D卷积神经网络(CNN)和长短期记忆(LSTM)网络的深度学习架构,用于检测致死性心室心律失常 | 结合1D-CNN和LSTM网络,提出了一种新的深度学习架构,用于心室颤动(VF)检测,并在OHCA数据上达到了迄今为止最高的准确率 | 研究使用了两个数据集,其中一个来自公共存储库,另一个来自OHCA患者,但未提及数据集的多样性和样本量的具体大小 | 开发一种能够在极短时间内准确诊断心室颤动的算法,以提高院外心脏骤停(OHCA)患者的生存率 | 心室颤动(VF)的检测 | 机器学习 | 心血管疾病 | 深度学习 | 1D-CNN和LSTM | ECG信号 | 两个数据集,一个来自公共存储库的Holter记录,另一个来自OHCA患者,具体样本量未提及 |
6785 | 2025-02-21 |
Hand Gesture Recognition in Automotive Human⁻Machine Interaction Using Depth Cameras
2018-Dec-24, Sensors (Basel, Switzerland)
DOI:10.3390/s19010059
PMID:30586882
|
综述 | 本文综述了使用深度摄像头进行手势识别在汽车人机交互中的应用,特别是基于飞行时间传感器的深度数据的机器学习方法 | 提出了一个新的基准数据集REHAP,包含超过一百万个独特的三维手势样本 | NA | 探讨在汽车人机交互中使用深度摄像头进行手势识别的机器学习方法 | 手势识别 | 计算机视觉 | NA | 飞行时间传感器 | 卷积神经网络(CNN)、长短期记忆网络(LSTM) | 深度数据 | 超过一百万个独特的三维手势样本 |
6786 | 2025-02-21 |
Deep Neural Network Based Predictions of Protein Interactions Using Primary Sequences
2018-Aug-01, Molecules (Basel, Switzerland)
DOI:10.3390/molecules23081923
PMID:30071670
|
研究论文 | 本文介绍了一种基于深度神经网络的蛋白质相互作用预测框架(DNN-PPI),仅使用蛋白质一级序列进行自动特征学习 | 提出了一种新的深度神经网络框架,能够自动从蛋白质一级序列中学习特征,避免了传统方法中繁琐的特征工程 | 模型的过拟合和泛化能力在大多数场景中尚未得到充分研究 | 大规模预测蛋白质-蛋白质相互作用,以深入了解蛋白质功能、疾病发生和治疗设计 | 蛋白质一级序列 | 机器学习 | NA | 深度学习 | CNN, LSTM | 序列数据 | Pan的人类PPI数据集及六个外部数据集 |
6787 | 2025-02-21 |
Automatic detection and classification of marmoset vocalizations using deep and recurrent neural networks
2018-07, The Journal of the Acoustical Society of America
IF:2.1Q1
DOI:10.1121/1.5047743
PMID:30075670
|
研究论文 | 本文研究了使用大规模狨猴发声数据集和深度学习技术自动检测和分类狨猴发声的方法 | 本文创新性地将深度神经网络(DNN)和长短期记忆循环神经网络(LSTM-RNN)应用于狨猴发声的检测和分类,并与传统的基于规则的检测方法和支持向量机(SVM)分类算法进行了比较 | 实验数据仅来自四对狨猴双胞胎,样本量相对较小,可能影响模型的泛化能力 | 自动检测和分类狨猴发声 | 狨猴发声 | 自然语言处理 | NA | 深度学习 | DNN, LSTM-RNN, SVM | 音频 | 1500分钟的音频数据,来自四对狨猴双胞胎 |
6788 | 2025-02-21 |
FPGA implementation of deep-learning recurrent neural networks with sub-millisecond real-time latency for BCI-decoding of large-scale neural sensors (104 nodes)
2018-Jul, Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Annual International Conference
DOI:10.1109/EMBC.2018.8512415
PMID:30440576
|
研究论文 | 本文展示了一种基于FPGA的LSTM RNN实现,用于在名为'NeuroCoder'的移动低功耗嵌入式系统平台上解码10,000个神经数据通道 | 开发了一种能够在移动低功耗嵌入式系统平台上实现亚毫秒级实时延迟的FPGA实现,用于解码大规模神经数据 | 研究仅提供了在模拟10,000个神经通道上解码20维频谱时间表示的证明,未涉及实际神经数据的验证 | 开发低延迟实时神经解码系统,用于下一代脑机接口在复杂人类任务中的应用 | 大规模神经传感器数据(10,000个通道) | 机器学习 | NA | FPGA实现 | LSTM RNN | 神经数据 | 模拟10,000个神经通道 |
6789 | 2025-02-21 |
A deep learning framework for causal shape transformation
2018-Feb, Neural networks : the official journal of the International Neural Network Society
IF:6.0Q1
DOI:10.1016/j.neunet.2017.12.003
PMID:29301111
|
研究论文 | 本文提出了一种结合卷积神经网络(CNN)和堆叠自编码器(SAE)的混合架构,用于学习一系列因果动作,将输入视觉模式或分布非线性转换为具有相同支持的目标视觉模式或分布 | 提出了一种新的混合架构,结合CNN和SAE,用于解决高维一对多逆映射问题,特别是在微流体流动塑造中的应用 | 该方法主要适用于可见域中的状态转换,可能不适用于依赖潜在域的问题 | 研究如何利用深度学习解决高维物理问题,特别是在材料科学和医学生物学中的多步拓扑变换 | 微流体流动塑造中的高维一对多逆映射问题 | 机器学习 | NA | 深度学习 | CNN, SAE | 图像 | NA |
6790 | 2025-02-21 |
Deep Recurrent Neural Networks for Human Activity Recognition
2017-Nov-06, Sensors (Basel, Switzerland)
DOI:10.3390/s17112556
PMID:29113103
|
研究论文 | 本文提出使用深度循环神经网络(DRNNs)构建能够捕捉可变长度输入序列中长距离依赖关系的识别模型 | 提出了基于长短期记忆(LSTM)DRNNs的单向、双向和级联架构,能够捕捉输入序列中的长距离依赖关系,优于传统的机器学习方法和其它深度学习技术 | 未提及具体局限性 | 研究人类活动识别中的深度学习应用 | 从身体佩戴传感器获取的原始输入序列 | 机器学习 | NA | 深度学习 | DRNNs, LSTM | 时间序列数据 | 未提及具体样本数量 |
6791 | 2025-02-21 |
DeepSleepNet: A Model for Automatic Sleep Stage Scoring Based on Raw Single-Channel EEG
2017-11, IEEE transactions on neural systems and rehabilitation engineering : a publication of the IEEE Engineering in Medicine and Biology Society
IF:4.8Q1
DOI:10.1109/TNSRE.2017.2721116
PMID:28678710
|
研究论文 | 本文提出了一种名为DeepSleepNet的深度学习模型,用于基于原始单通道EEG的自动睡眠阶段评分 | 该模型利用卷积神经网络提取时间不变特征,并使用双向长短期记忆网络自动学习睡眠阶段之间的转换规则,无需手工设计特征 | 模型未在不同数据集的模型架构和训练算法上进行调整,可能限制了其泛化能力 | 开发一种自动睡眠阶段评分模型,以减少对手工设计特征的依赖 | 单通道EEG数据 | 机器学习 | NA | 深度学习 | CNN, 双向LSTM | EEG信号 | 两个公共睡眠数据集(MASS和Sleep-EDF)中的不同单通道EEG数据 |
6792 | 2025-02-21 |
A deep learning framework for financial time series using stacked autoencoders and long-short term memory
2017, PloS one
IF:2.9Q1
DOI:10.1371/journal.pone.0180944
PMID:28708865
|
研究论文 | 本文提出了一种结合小波变换、堆叠自编码器和长短期记忆网络的新型深度学习框架,用于股票价格预测 | 首次将堆叠自编码器用于股票价格预测中的深度特征提取 | NA | 提高股票价格预测的准确性和盈利能力 | 六个市场指数及其对应的指数期货 | 机器学习 | NA | 小波变换、堆叠自编码器、长短期记忆网络 | SAEs, LSTM | 时间序列数据 | 六个市场指数及其对应的指数期货 |
6793 | 2025-02-20 |
Detection of camellia oil adulteration based on near-infrared spectroscopy and smartphone combined with deep learning and multimodal fusion
2025-Apr-30, Food chemistry
IF:8.5Q1
DOI:10.1016/j.foodchem.2025.142930
PMID:39826519
|
研究论文 | 本研究开发了一种基于近红外光谱和智能手机结合深度学习与多模态融合的茶油掺假检测系统 | 结合近红外光谱和智能手机视觉数据,采用多模态融合方法提高检测精度,提出了一种实时检测茶油真实性的新方法 | 研究仅针对茶油与菜籽油的二元掺假系统,未涉及其他可能的掺假油种 | 开发一种实时检测茶油掺假的方法,以应对日益严重的食品安全问题 | 茶油与菜籽油的掺假样品 | 机器学习 | NA | 近红外光谱、智能手机图像和视频分析 | 深度学习模型 | 光谱数据、图像数据、视频数据 | 243个掺假油样 |
6794 | 2025-02-20 |
Convolutional neural networks for automatic MR classification of myocardial iron overload in thalassemia major patients
2025-Mar, European radiology
IF:4.7Q1
DOI:10.1007/s00330-024-11245-x
PMID:39658686
|
研究论文 | 本文开发了一种深度学习模型,用于从T2*多回波MR图像中自动分类心肌铁过载(MIO) | 开发了两种2D卷积神经网络(CNN),分别用于多切片(MS-HippoNet)和单切片(SS-HippoNet)分析,以自动分类心肌铁过载 | 研究仅基于回顾性数据,且样本主要来自地中海贫血患者,可能限制了模型的泛化能力 | 开发一种深度学习模型,用于自动分类心肌铁过载(MIO) | 496名地中海贫血患者的心脏T2*多回波MR图像 | 计算机视觉 | 地中海贫血 | T2*多回波MR成像 | CNN | 图像 | 823张心脏T2*多回波MR图像,来自496名地中海贫血患者 |
6795 | 2025-02-20 |
A deep learning method for total-body dynamic PET imaging with dual-time-window protocols
2025-Mar, European journal of nuclear medicine and molecular imaging
IF:8.6Q1
DOI:10.1007/s00259-024-07012-1
PMID:39688700
|
研究论文 | 本文开发了一种深度学习算法,能够从双时间窗协议预测动态图像,从而缩短动态正电子发射断层扫描(PET)的扫描时间 | 提出了一种双向序列到序列模型(Bi-AT-Seq2Seq),并引入注意力机制,显著优于单向或无注意力机制的模型 | 研究样本量相对较小,且仅限于肺结节和乳腺结节患者 | 缩短动态PET扫描时间,提高临床应用的可行性 | 70名肺结节或乳腺结节患者 | 医学影像分析 | 肺结节, 乳腺结节 | 动态PET/CT扫描 | Bi-AT-Seq2Seq | 医学影像 | 70名患者(32名男性,平均年龄53.61±13.53岁) |
6796 | 2025-02-20 |
Deep learning-based intratumoral and peritumoral features for differentiating ocular adnexal lymphoma and idiopathic orbital inflammation
2025-Mar, European radiology
IF:4.7Q1
DOI:10.1007/s00330-024-11275-5
PMID:39702637
|
研究论文 | 本文评估了基于深度学习的肿瘤内和肿瘤周围特征在区分眼附属器淋巴瘤(OAL)和特发性眼眶炎症(IOI)中的价值 | 使用基于注意力的融合模型融合了肿瘤内和肿瘤周围区域以及多个MR序列提取的特征,显著提高了诊断性能 | 研究中未发现肿瘤周围特征与肿瘤内特征在性能上有显著差异 | 评估深度学习在区分OAL和IOI中的应用价值 | 97名经病理学确认的OAL和IOI患者 | 数字病理学 | 眼附属器淋巴瘤, 特发性眼眶炎症 | 深度学习 | 基于注意力的融合模型 | MR图像 | 97名患者(43名OAL,54名IOI) |
6797 | 2025-02-20 |
Identifying influential nodes in brain networks via self-supervised graph-transformer
2025-Mar, Computers in biology and medicine
IF:7.0Q1
DOI:10.1016/j.compbiomed.2024.109629
PMID:39731922
|
研究论文 | 本文提出了一种基于图变换器的自监督图重建框架(SSGR-GT),用于识别脑网络中的关键节点 | 采用自监督深度学习模型,无需手动特征提取,直接从数据中学习有意义的表示,结合图变换器提取脑图的局部和全局特征,并通过图融合技术结合功能和结构信息进行多模态分析 | 依赖于自监督学习的效果,可能受限于数据质量和模型训练过程 | 识别脑网络中的关键节点(I-nodes),以增强对脑工作机制的理解 | 脑网络中的关键节点 | 脑成像 | NA | 自监督深度学习,图变换器 | Graph-Transformer | 脑图数据 | 56个关键节点 |
6798 | 2025-02-20 |
ResViT FusionNet Model: An explainable AI-driven approach for automated grading of diabetic retinopathy in retinal images
2025-Mar, Computers in biology and medicine
IF:7.0Q1
DOI:10.1016/j.compbiomed.2025.109656
PMID:39823821
|
研究论文 | 本文提出了一种名为ResViT FusionNet的混合模型,用于自动分级糖尿病视网膜病变(DR)的视网膜图像 | 结合了卷积神经网络(CNN)和视觉变换器(ViT)的优势,并采用可解释的人工智能(XAI)技术提高模型的透明度和可解释性 | 未提及具体的数据集规模或模型在更广泛数据集上的泛化能力 | 提高糖尿病视网膜病变(DR)的自动检测和分类准确性 | 糖尿病视网膜病变(DR)的视网膜图像 | 计算机视觉 | 糖尿病视网膜病变 | 数据增强(包括像素值重缩放、水平翻转、旋转和缩放) | ResViT FusionNet(结合ResNet50和ViT) | 图像 | 未提及具体样本数量 |
6799 | 2025-02-20 |
Synthesized colonoscopy dataset from high-fidelity virtual colon with abnormal simulation
2025-Mar, Computers in biology and medicine
IF:7.0Q1
DOI:10.1016/j.compbiomed.2025.109672
PMID:39826299
|
研究论文 | 本文提出了一种从高保真虚拟结肠生成合成结肠镜图像的方法,用于训练深度学习模型 | 通过高保真3D结肠模型和异常模拟生成多样化的结肠镜图像,解决了真实结肠镜图像数据不足的问题 | 合成数据的真实性可能仍与真实数据存在差距,且未提及数据集的公开性 | 解决深度学习模型在结肠镜图像数据不足情况下的泛化能力问题 | 高保真3D结肠模型及其生成的合成结肠镜图像 | 计算机视觉 | 结肠疾病 | CT图像建模、表面网格变形、纹理映射、血液扩散模拟 | 深度学习模型 | 图像 | NA |
6800 | 2025-02-20 |
Cross-modality PET image synthesis for Parkinson's Disease diagnosis: a leap from [18F]FDG to [11C]CFT
2025-Mar, European journal of nuclear medicine and molecular imaging
IF:8.6Q1
DOI:10.1007/s00259-025-07096-3
PMID:39828866
|
研究论文 | 本文开发了一种深度学习框架,用于从真实的[18F]FDG PET图像合成[11C]CFT PET图像,并利用它们的跨模态相关性来区分帕金森病(PD)和正常对照(NC) | 通过深度学习框架合成[11C]CFT PET图像,解决了[11C]CFT PET成像在大多数医院不可用的问题,从而扩大了先进诊断工具的应用范围 | 研究中未提及合成图像在不同医院或设备上的通用性和稳定性 | 开发一种深度学习框架,用于合成[11C]CFT PET图像,以增强帕金森病的诊断 | 帕金森病患者和正常对照者 | 数字病理学 | 帕金森病 | 深度学习 | 深度学习框架 | PET图像 | 604名参与者(274名帕金森病患者和330名正常对照者) |