深度学习在生物医药领域中的应用

本数据库通过收集和整理最新科研文献信息而得,供了解领域前沿进展之用。数据源自 PubMed Data ,每日自动更新,已收录文献数量参见 统计表格。表格内容由 GPT 自动整理,可能存在错误或遗漏,请使用时务必注意核实!

如有建议或合作意向,欢迎联系 linlin.yan(AT)bioinfo.app 或 微信 yanlinlin82。本项目遵循 MIT 许可 发布,欢迎下载 源码 自行修改使用。如觉得不错,还请不吝 给我打赏,你的支持是我继续创新的重要动力!

Sample Image
添加微信请说明来意
Sample Image
微信赞赏

除通过在线浏览外,为方便用户离线查阅,本站也提供 付费下载(定价10元)。之所以考虑收费,是因为批量扫描这些文献并整理也是有一定成本的,还请理解并多多支持。本站数据会持续更新,而仅需一次付费,未来就可以随时重新下载到最新版本数据。

当前筛选条件: [分区不过滤] [IF不过滤] [发表日期不过滤] [清除筛选条件]
当前共找到 24188 篇文献,本页显示第 8781 - 8800 篇。
序号 推送日期 文章 类型 简述 创新点 不足 研究目的 研究对象 领域 病种 技术 模型 数据类型 样本量
8781 2025-01-14
Unsupervised deep learning-based medical image registration: a survey
2025-Jan-07, Physics in medicine and biology IF:3.3Q1
综述 本文综述了基于无监督深度学习的医学图像配准技术的最新进展 深入探讨了创新的网络架构,并详细回顾了这些研究的独特贡献 讨论了各类方法面临的主要挑战 帮助对该领域感兴趣的读者深入了解这一激动人心的领域 医学图像配准技术 医学图像分析 NA 无监督深度学习 深度神经网络 医学图像 NA
8782 2025-01-14
CTHNet: A CNN-Transformer Hybrid Network for Landslide Identification in Loess Plateau Regions Using High-Resolution Remote Sensing Images
2025-Jan-06, Sensors (Basel, Switzerland)
研究论文 本文提出了一种CNN-Transformer混合网络CTHNet,用于在黄土高原地区使用高分辨率遥感图像进行滑坡识别 结合CNN和Transformer的优势,提出了一种新的神经网络架构,能够同时提取高维局部特征和全局特征,从而在复杂环境中有效识别滑坡 研究主要针对黄土高原地区的滑坡识别,可能在其他地理环境中的适用性有限 提高在复杂环境中使用高分辨率遥感图像进行滑坡识别的准确性和效率 黄土高原地区的滑坡和非滑坡样本 计算机视觉 NA 高分辨率遥感图像分析 CNN-Transformer混合网络 图像 1500个黄土滑坡和非滑坡样本
8783 2025-01-14
Munsell Soil Colour Prediction from the Soil and Soil Colour Book Using Patching Method and Deep Learning Techniques
2025-Jan-06, Sensors (Basel, Switzerland)
研究论文 本研究旨在通过深度学习技术从移动设备拍摄的图像中预测Munsell土壤颜色,以提高土壤颜色识别的准确性 提出了一种基于补丁的机制来丰富数据集,显著提高了Munsell土壤颜色预测的准确性 研究中使用的土壤样本数量有限,可能影响方法的普适性和可扩展性 预测Munsell土壤颜色,以提供更准确的土壤健康评估 Munsell土壤颜色书中的颜色芯片和页面 计算机视觉 NA 深度学习 NA 图像 443个颜色芯片和14页
8784 2025-01-14
Semi-Automatic Refinement of Myocardial Segmentations for Better LVNC Detection
2025-Jan-06, Journal of clinical medicine IF:3.0Q1
研究论文 本文提出了一种半自动框架,通过结合神经网络输出与专家修正、实施斑点选择方法以及使用基线U-Net模型进行交叉验证,来改进心脏MRI中左心室心肌的分割,从而提高左心室非致密化心肌病(LVNC)诊断模型的准确性 提出了一种结合神经网络输出与专家修正的半自动框架,通过斑点选择方法和基线U-Net模型的交叉验证,显著提高了心肌分割的准确性 研究依赖于专家修正,可能引入主观偏差,且仅在三个医院的数据集上进行了验证,样本多样性可能有限 改进心脏MRI中左心室心肌的分割,以提高左心室非致密化心肌病(LVNC)诊断模型的准确性 心脏MRI中的左心室心肌分割 数字病理学 心血管疾病 心脏MRI U-Net 图像 来自三个医院的数据集
8785 2025-01-14
Recurrent and Metastatic Head and Neck Cancer: Mechanisms of Treatment Failure, Treatment Paradigms, and New Horizons
2025-Jan-05, Cancers IF:4.5Q1
综述 本文综述了头颈癌治疗失败和转移的生物学机制,以及当前的治疗模式和未来的研究方向 免疫疗法在局部复发或转移性头颈癌中的应用不仅改善了肿瘤学结果,还提供了关于免疫逃逸和最终治疗失败机制的重要见解 NA 探讨头颈癌治疗失败和转移的机制,并总结当前的治疗模式和未来的研究方向 头颈癌患者,特别是局部复发或转移性头颈癌患者 NA 头颈癌 免疫疗法 NA NA NA
8786 2025-01-14
Lightweight Deep Learning Model, ConvNeXt-U: An Improved U-Net Network for Extracting Cropland in Complex Landscapes from Gaofen-2 Images
2025-Jan-05, Sensors (Basel, Switzerland)
研究论文 本文提出了一种轻量级深度学习模型ConvNeXt-U,用于从高分二号影像中提取复杂景观中的耕地 ConvNeXt-U保留了U-Net的U形结构,但用简化的ConvNeXt架构替换了编码器,并集成了轻量级的CBAM模块,增强了边缘特征的捕捉和提取精度 NA 提高复杂景观中耕地提取的准确性和效率 高分二号影像中的耕地 计算机视觉 NA 深度学习 ConvNeXt-U, U-Net, CBAM 遥感影像 中国湖南省衡阳县的高分二号遥感影像
8787 2025-01-14
Bioinformatics and Deep Learning Approach to Discover Food-Derived Active Ingredients for Alzheimer's Disease Therapy
2025-Jan-04, Foods (Basel, Switzerland)
研究论文 本研究旨在通过结合生物信息学和深度神经网络分析的方法,发现具有阿尔茨海默病治疗潜力的天然化合物 创新性地结合了生物信息学和深度神经网络分析,用于发现食物来源的活性成分 研究主要依赖于计算预测和体外实验,缺乏体内实验验证 探索食物成分和全食物作为阿尔茨海默病潜在治疗剂的可能性 天然化合物及其对阿尔茨海默病相关蛋白的作用 生物信息学 阿尔茨海默病 分子对接、深度神经网络分析 随机森林回归模型 化学数据库数据 166种天然化合物
8788 2025-01-14
Video-Based Plastic Bag Grabbing Action Recognition: A New Video Dataset and a Comparative Study of Baseline Models
2025-Jan-04, Sensors (Basel, Switzerland)
研究论文 本文介绍了一个专门用于识别抓取塑料袋动作的新视频数据集,并提出了三种不同的基线方法进行比较研究 引入了一个新的视频数据集,专门用于识别抓取塑料袋的动作,并提出了三种不同的基线方法进行比较 研究局限于特定动作的识别,可能不适用于其他类型的动作识别任务 解决从CCTV视频片段中识别抓取塑料袋动作的挑战 CCTV视频片段中的抓取塑料袋动作 计算机视觉 NA NA CNN, 3D CNN 视频 NA
8789 2025-01-14
Skin Cancer Detection Using Transfer Learning and Deep Attention Mechanisms
2025-Jan-03, Diagnostics (Basel, Switzerland)
研究论文 本文探讨了使用迁移学习和深度注意力机制进行皮肤癌检测的效果 首次将注意力机制与预训练的Xception迁移学习模型结合,用于皮肤癌的二元分类 需要进一步研究以提高检测准确性 研究不同注意力机制对Xception模型在检测良性和恶性皮肤病变中的性能影响 皮肤病变图像 计算机视觉 皮肤癌 深度学习,迁移学习 Xception, 自注意力机制(SL), 硬注意力机制(HD), 软注意力机制(SF) 图像 HAM10000数据集
8790 2025-01-14
Deep Convolutional Framelets for Dose Reconstruction in Boron Neutron Capture Therapy with Compton Camera Detector
2025-Jan-03, Cancers IF:4.5Q1
研究论文 本研究开发了深度神经网络模型,用于通过模拟的BNCT康普顿相机图像数据集估计剂量分布,旨在减少重建时间 使用U-Net架构和基于深度卷积框架的变体,减少噪声和伪影,显著缩短重建时间 需要进一步优化输入图像的重建,以提升性能 开发快速剂量重建方法,以支持硼中子俘获治疗中的实时剂量监测 硼中子俘获治疗中的剂量分布 计算机视觉 癌症 康普顿成像 U-Net, 深度卷积框架变体 图像 模拟的BNCT康普顿相机图像数据集
8791 2025-01-14
An Attention-Based Multidimensional Fault Information Sharing Framework for Bearing Fault Diagnosis
2025-Jan-03, Sensors (Basel, Switzerland)
研究论文 本文提出了一种基于注意力的多维故障信息共享框架(AMFIS),用于解决小样本环境下轴承故障诊断的多维信息获取问题 提出了一个创新的动态调整策略(DAS),用于自适应调节故障定位任务(FLT)和故障量化任务(FQT)的训练权重,以达到最佳训练效果 在小样本环境下进行多维故障诊断仍存在挑战,且实际工程应用中样本量不足可能限制深度学习的潜力 克服小样本环境下轴承故障诊断的多维信息获取困难 轴承故障诊断 机器学习 NA 深度学习 基于注意力的网络 多维故障信息 小样本环境
8792 2025-01-14
Seasonal Land Use and Land Cover Mapping in South American Agricultural Watersheds Using Multisource Remote Sensing: The Case of Cuenca Laguna Merín, Uruguay
2025-Jan-03, Sensors (Basel, Switzerland)
研究论文 本研究利用多源遥感技术对乌拉圭Cuenca de la Laguna Merín地区的夏季和冬季土地利用/土地覆盖特征进行制图,并比较了随机森林、支持向量机和梯度提升树分类器的性能 结合Sentinel-2、Sentinel-1和SRTM影像,使用Google Earth Engine平台,对比了多种分类器在土地利用/土地覆盖制图中的表现,并分析了特征重要性 在减少类别混淆方面存在挑战,特别是自然植被与季节性淹没植被、后农业用地/裸地与草本区域之间的区分 利用多源遥感技术进行季节性土地利用/土地覆盖制图,并评估不同分类器的性能 乌拉圭Cuenca de la Laguna Merín地区的土地利用/土地覆盖特征 遥感 NA 多源遥感(Sentinel-2、Sentinel-1、SRTM影像) 随机森林、支持向量机、梯度提升树 遥感影像 NA
8793 2025-01-14
Deep Learning-Based Pointer Meter Reading Recognition for Advancing Manufacturing Digital Transformation Research
2025-Jan-03, Sensors (Basel, Switzerland)
研究论文 本文提出了一种基于深度学习的指针仪表读数识别方法,以推动制造业数字化转型研究 提出了一种基于YOLOX-DC的解耦圆头检测算法和PM-SwinUnet分割网络的端到端PMRR方法,解决了现有方法在仪表图像模糊、光照不均、倾斜和复杂背景等问题上的不足 NA 提高指针仪表读数识别的准确性和鲁棒性,以支持制造业的数字化转型 指针仪表图像 计算机视觉 NA 深度学习 YOLOX-DC, PM-SwinUnet 图像 三个指针仪表数据集
8794 2025-01-14
Epilepsy Diagnosis from EEG Signals Using Continuous Wavelet Transform-Based Depthwise Convolutional Neural Network Model
2025-Jan-02, Diagnostics (Basel, Switzerland)
研究论文 本文提出了一种基于连续小波变换的深度卷积神经网络模型,用于从EEG信号中诊断癫痫 该研究首次将连续小波变换与深度卷积神经网络结合,并采用图像拼接技术,无需额外的分类器或特征选择算法 未提及模型在其他数据集上的泛化能力及实际临床应用中的表现 开发一种自动化的癫痫诊断系统,以提高诊断效率和准确性 35通道的EEG信号 机器学习 癫痫 连续小波变换 深度卷积神经网络(DCNN) 图像 未提及具体样本数量
8795 2025-01-14
Advanced Brain Tumor Classification in MR Images Using Transfer Learning and Pre-Trained Deep CNN Models
2025-Jan-02, Cancers IF:4.5Q1
研究论文 本研究探讨了预训练深度学习模型在脑部MRI图像分类中的有效性,旨在通过自动化提升诊断过程 使用多种先进的预训练模型(如Xception、MobileNetV2等)进行微调,结合高级预处理和数据增强技术,显著提高了分类准确率 在Glioma和Meningioma类别上的召回率仍有提升空间,深度学习模型的黑箱性质需要进一步关注以提高可解释性 提高脑部肿瘤分类的准确性和效率,以支持临床诊断 脑部MRI图像 计算机视觉 脑肿瘤 迁移学习 CNN 图像 7023张脑部MRI图像
8796 2025-01-14
Study on Long-Term Temperature Variation Characteristics of Concrete Bridge Tower Cracks Based on Deep Learning
2025-Jan-02, Sensors (Basel, Switzerland)
研究论文 本研究旨在利用LSTM神经网络开发深度学习模型,基于主塔的热变化预测裂缝深度 利用LSTM神经网络预测混凝土桥塔裂缝深度,通过多温度输入数据集提高模型预测裂缝宽度的准确性 NA 开发深度学习模型以预测混凝土桥塔裂缝深度,并建立精确的温度阈值以早期检测裂缝异常 淮安桥的混凝土桥塔裂缝 机器学习 NA 深度学习 LSTM 温度数据 NA
8797 2025-01-14
Review of Recent Advances in Predictive Maintenance and Cybersecurity for Solar Plants
2025-Jan-02, Sensors (Basel, Switzerland)
review 本文系统回顾了太阳能发电厂预测性维护和网络安全的最新进展,探讨了预测性维护技术在太阳能发电厂中的应用优势与挑战 强调了物联网(IoT)、机器学习(ML)和深度学习(DL)在太阳能板预测性维护中的整合,提高了维护过程的准确性和效率 在可再生能源行业中采用预测性维护面临模型复杂性与准确性之间的平衡、系统不可预测性以及适应环境条件变化的挑战 探讨太阳能发电厂预测性维护方法和网络安全的最新进展 太阳能板系统 machine learning NA IoT, ML, DL NA 实时监测数据 NA
8798 2025-01-14
Cybersecurity Solutions for Industrial Internet of Things-Edge Computing Integration: Challenges, Threats, and Future Directions
2025-Jan-02, Sensors (Basel, Switzerland)
研究论文 本文详细介绍了工业物联网(IIoT)与边缘计算集成中网络物理系统(CPS)网络安全的当前挑战和解决方案 系统性地收集和分析了过去五年的相关文献,开发了IIoT-边缘计算中CPS的主要安全机制的详细分类,并进行了与现有研究的比较分析 未提及具体的研究局限性 推进IIoT-边缘计算集成中的网络安全研究 工业物联网(IIoT)与边缘计算集成中的网络物理系统(CPS) 网络安全 NA 机器学习(ML)、联邦学习(FL)、区块链、区块链-ML、深度学习(DL)、加密、密码学、IT/OT融合、数字孪生 NA NA NA
8799 2025-01-14
A Comprehensive Survey of Machine Learning Techniques and Models for Object Detection
2025-Jan-02, Sensors (Basel, Switzerland)
综述 本文对计算机视觉中的目标检测领域进行了全面调查,重点分析了机器学习和深度学习技术的演变和重大进展 深入探讨了从传统方法到最新深度学习模型的广泛方法,并评估了它们的性能、优势和局限性,同时讨论了该领域的挑战和未来研究方向 未涉及具体实验数据或样本分析,主要集中于理论和方法论的综述 增强目标检测系统在不同应用中的鲁棒性、准确性和效率 目标检测技术 计算机视觉 NA 机器学习(ML)、深度学习(DL) Transformers 图像 NA
8800 2025-01-14
ECMHA-PP: A Breast Cancer Prognosis Prediction Model Based on Energy-Constrained Multi-Head Self-Attention
2025-Jan, Proteomics. Clinical applications
研究论文 本文提出了一种基于能量约束多头自注意力的深度学习模型ECMHA-PP,用于预测乳腺癌的预后 ECMHA-PP模型通过能量约束多头自注意力层提高了特征提取能力,结合交叉位置混合和通道混合多层感知器,显著提升了乳腺癌预后预测的准确性 NA 提高乳腺癌预后预测的准确性,以帮助医生制定更合理的治疗策略 乳腺癌患者 机器学习 乳腺癌 深度学习 ECMHA-PP(基于能量约束多头自注意力的预后预测模型) 临床数据 METABRIC数据集和BRCA数据集
回到顶部