本数据库通过收集和整理最新科研文献信息而得,供了解领域前沿进展之用。数据源自 PubMed Data ,每日自动更新,已收录文献数量参见 统计表格。表格内容由 GPT 自动整理,可能存在错误或遗漏,请使用时务必注意核实!
如有建议或合作意向,欢迎联系 linlin.yan(AT)bioinfo.app 或 微信 yanlinlin82。本项目遵循 MIT 许可 发布,欢迎下载 源码 自行修改使用。如觉得不错,还请不吝 给我打赏,你的支持是我继续创新的重要动力!
除通过在线浏览外,为方便用户离线查阅,本站也提供 付费下载(定价10元)。之所以考虑收费,是因为批量扫描这些文献并整理也是有一定成本的,还请理解并多多支持。本站数据会持续更新,而仅需一次付费,未来就可以随时重新下载到最新版本数据。
序号 | 推送日期 | 文章 | 类型 | 简述 | 创新点 | 不足 | 研究目的 | 研究对象 | 领域 | 病种 | 技术 | 模型 | 数据类型 | 样本量 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
8821 | 2025-01-14 |
Physics-Constrained Deep Learning for Security Ink Colorimetry with Attention-Based Spectral Sensing
2024-Dec-28, Sensors (Basel, Switzerland)
DOI:10.3390/s25010128
PMID:39796919
|
研究论文 | 本文提出了一种基于物理约束的深度学习框架,用于高精度安全墨水比色法,集成了物理信息神经网络架构、先进的注意力机制和贝叶斯优化框架 | 该框架在颜色预测精度上达到了前所未有的水平(CIEDE2000 (ΔE00): 0.70 ± 0.08),特征提取效率提高了58.3%,并通过贝叶斯优化框架确保参数调优的鲁棒性 | NA | 开发一种高精度的安全墨水比色法,以应对全球安全和商业中的伪造问题 | 安全墨水 | 机器学习 | NA | 深度学习 | 物理信息神经网络架构 | 光谱数据 | 1500个工业样品 |
8822 | 2025-01-14 |
Leveraging Thermal Infrared Imaging for Pig Ear Detection Research: The TIRPigEar Dataset and Performances of Deep Learning Models
2024-Dec-27, Animals : an open access journal from MDPI
IF:2.7Q1
DOI:10.3390/ani15010041
PMID:39794984
|
研究论文 | 本文介绍了TIRPigEar数据集,该数据集包含23,189张猪耳朵的热红外图像,用于训练猪耳朵检测模型并分析猪的温度信息 | 首次建立了包含大量猪耳朵热红外图像的数据集,并验证了其在YOLOv9m模型上的最佳性能 | 猪耳朵的温度不能直接代表核心体温,且数据集依赖于手动标注 | 通过热红外成像技术检测猪耳朵信息,为精准畜牧业提供非接触、快速、有效的方法 | 猪耳朵 | 计算机视觉 | NA | 热红外成像 | YOLOv9m | 图像 | 23,189张热红外图像,69,567个标注文件 |
8823 | 2025-01-14 |
Automatic Reproduction of Natural Head Position in Orthognathic Surgery Using a Geometric Deep Learning Network
2024-Dec-27, Diagnostics (Basel, Switzerland)
DOI:10.3390/diagnostics15010042
PMID:39795570
|
研究论文 | 本文开发了一种几何深度学习网络(NHP-Net),用于从CT扫描中自动再现自然头位(NHP),以提高正颌手术的精确性 | 开发了一种新的几何深度学习网络(NHP-Net),用于自动从CT扫描中再现自然头位,解决了传统方法的可重复性问题 | 研究仅基于150名正颌手术患者的数据集,样本量相对较小 | 提高正颌手术中自然头位(NHP)的准确性和效率,以优化手术计划和改善患者结果 | 正颌手术患者 | 计算机视觉 | NA | CT扫描 | 几何深度学习网络(NHP-Net) | 三维头骨网格和点云数据 | 150名正颌手术患者 |
8824 | 2025-01-14 |
Reconstruction of Optical Coherence Tomography Images from Wavelength Space Using Deep Learning
2024-Dec-27, Sensors (Basel, Switzerland)
DOI:10.3390/s25010093
PMID:39796883
|
研究论文 | 本文提出了一种基于深度学习的简化且计算效率高的方法,直接从波长域重建去斑的光学相干断层扫描(OCT)图像 | 提出了一种直接从波长域重建OCT图像的深度学习方法,减少了传统方法对硬件资源的依赖和计算复杂性 | 未提及具体的数据集大小或实验样本数量,可能影响方法的普适性验证 | 旨在提高OCT图像重建的质量和计算效率 | 光学相干断层扫描(OCT)图像 | 计算机视觉 | NA | 深度学习 | CNN(卷积神经网络) | 图像 | NA |
8825 | 2025-01-14 |
Fault Diagnosis of Lithium Battery Modules via Symmetrized Dot Pattern and Convolutional Neural Networks
2024-Dec-27, Sensors (Basel, Switzerland)
DOI:10.3390/s25010094
PMID:39796884
|
研究论文 | 本文提出了一种结合对称点模式(SDP)方法和卷积神经网络(CNN)的混合算法,用于锂电池模块的故障检测 | 结合SDP方法和CNN进行锂电池故障检测,实现了99.9%的识别准确率 | NA | 开发一种高效的锂电池模块故障检测方法 | 锂电池模块 | 机器学习 | NA | 对称点模式(SDP)方法,卷积神经网络(CNN) | CNN | 图像 | 共收集3000个样本,每种故障类型400个用于训练,200个用于测试 |
8826 | 2025-01-14 |
Time-Series Forecasting of PM2.5 and PM10 Concentrations Based on the Integration of Surveillance Images
2024-Dec-27, Sensors (Basel, Switzerland)
DOI:10.3390/s25010095
PMID:39796885
|
研究论文 | 本文提出了一种双通道深度学习模型,结合监控图像和多源数值数据进行空气质量预测,特别是PM2.5和PM10浓度的时间序列预测 | 创新点在于结合了VGG16和LSTM的混合网络,能够从监控图像序列中捕捉详细的时空特征,并结合大气、气象和时间数据,实现更准确的空气质量预测 | 未来的工作需要扩展数据集并优化网络架构,以进一步提高预测精度和计算效率 | 研究目标是提高空气质量预测的准确性和鲁棒性,以减轻污染相关危害并保护公共健康 | 研究对象是PM2.5和PM10浓度的预测 | 计算机视觉 | NA | 深度学习 | VGG16-LSTM | 图像和数值数据 | 2021年上海数据集以及台湾高雄两个站点的数据集 |
8827 | 2025-01-14 |
CINet: A Constraint- and Interaction-Based Network for Remote Sensing Change Detection
2024-Dec-27, Sensors (Basel, Switzerland)
DOI:10.3390/s25010103
PMID:39796892
|
研究论文 | 本文提出了一种基于约束和交互的网络(CINet),用于遥感变化检测(RSCD),通过引入约束机制和跨空间通道注意力模块(CSCA)来提高变化检测的准确性 | 提出了约束机制和跨空间通道注意力模块(CSCA),有效增强了双时相图像特征图之间的信息交互和变化检测的准确性 | 未明确提及具体局限性 | 提高遥感变化检测的准确性和有效性 | 双时相遥感图像 | 计算机视觉 | NA | 深度学习 | CINet | 图像 | 六个广泛使用的遥感基准数据集(如LEVIR-CD数据集) |
8828 | 2025-01-14 |
Damage Detection and Identification on Elevator Systems Using Deep Learning Algorithms and Multibody Dynamics Models
2024-Dec-27, Sensors (Basel, Switzerland)
DOI:10.3390/s25010101
PMID:39796893
|
研究论文 | 本文开发了一种结合深度学习算法和多体动力学模型的新方法,用于电梯系统的损伤检测和识别 | 结合物理测量和高保真多体动力学模型生成的振动数据,与深度学习算法结合,用于电梯系统的损伤检测和分类 | 数据可能稀缺或不存在,可能影响整体检测过程 | 开发一种用于电梯系统的损伤检测和识别方法,以提高维护和修复过程的效率 | 电梯系统 | 机器学习 | NA | 多体动力学模拟,深度学习算法 | 自编码器,卷积神经网络(CNN) | 振动数据 | NA |
8829 | 2025-01-14 |
Enhancing Autonomous Driving in Urban Scenarios: A Hybrid Approach with Reinforcement Learning and Classical Control
2024-Dec-27, Sensors (Basel, Switzerland)
DOI:10.3390/s25010117
PMID:39796908
|
研究论文 | 本文提出了一种结合强化学习和经典控制的混合方法,用于增强城市场景中的自动驾驶决策能力 | 提出了一种混合架构,结合了深度强化学习算法的学习能力和经典方法的可靠性,以解决自动驾驶决策问题 | 研究主要在模拟环境中进行,尚未在真实世界中进行大规模验证 | 增强自动驾驶在城市场景中的决策能力 | 自动驾驶车辆的决策系统 | 自动驾驶 | NA | 深度强化学习 | 部分可观测马尔可夫决策过程(POMDP) | 传感器预处理数据和高清地图信息 | 在CARLA模拟器中进行的多场景测试 |
8830 | 2025-01-14 |
BA-ATEMNet: Bayesian Learning and Multi-Head Self-Attention for Theoretical Denoising of Airborne Transient Electromagnetic Signals
2024-Dec-26, Sensors (Basel, Switzerland)
DOI:10.3390/s25010077
PMID:39796868
|
研究论文 | 本文介绍了一种基于深度学习的去噪网络BA-ATEMNet,用于处理航空瞬变电磁信号中的噪声问题 | 结合贝叶斯学习和多头自注意力机制,显著提升了卷积神经网络的特征提取能力,增强了模型在不同噪声环境下的适应性 | 未提及具体的数据集规模或实验条件的局限性 | 提高航空瞬变电磁信号去噪效果,以支持矿产勘探和地质调查 | 航空瞬变电磁信号 | 机器学习 | NA | 深度学习 | CNN, 多头自注意力机制 | 电磁信号 | 未提及具体样本数量 |
8831 | 2025-01-14 |
Residual Vision Transformer and Adaptive Fusion Autoencoders for Monocular Depth Estimation
2024-Dec-26, Sensors (Basel, Switzerland)
DOI:10.3390/s25010080
PMID:39796871
|
研究论文 | 本文提出了一种端到端的监督单目深度估计自编码器,结合混合卷积神经网络和视觉变换器的编码器以及有效的自适应融合解码器,用于从单视角彩色图像中预测高精度深度图 | 创新点在于在编码器中混合了视觉变换器的残差配置以增强局部和全局信息,并在解码器中引入了自适应融合模块以有效合并编码器和解码器的特征 | 未明确提及具体限制 | 研究目的是提高单目深度估计的精度,以应用于3D场景重建、虚拟现实、自动驾驶和人机交互等领域 | 单视角彩色图像 | 计算机视觉 | NA | 深度学习 | 自编码器(包含混合卷积神经网络和视觉变换器) | 图像 | NYU数据集 |
8832 | 2025-01-14 |
Automated Detection and Differentiation of Stanford Type A and Type B Aortic Dissections in CTA Scans Using Deep Learning
2024-Dec-25, Diagnostics (Basel, Switzerland)
DOI:10.3390/diagnostics15010012
PMID:39795540
|
研究论文 | 本文开发并验证了一种基于深度学习算法的模型系统,用于自动检测A型主动脉夹层(AD),并将其与正常和B型AD患者区分开来 | 创新点在于开发了一个包含两个组件的深度学习模型,一个用于识别主动脉,另一个用于自动检测主动脉夹层并根据Stanford分类确定其类型 | 研究的局限性在于样本量相对较小,且为回顾性研究,可能影响模型的泛化能力 | 研究目的是开发一种能够自动检测和区分A型和B型主动脉夹层的深度学习模型 | 研究对象为498名患者的主动脉计算机断层扫描血管造影(CTA)扫描数据 | 计算机视觉 | 心血管疾病 | 深度学习 | CNN | 图像 | 498名患者的CTA扫描数据,其中训练集398例,验证集50例,测试集50例,独立测试集316例 |
8833 | 2025-01-14 |
The Potential for High-Priority Care Based on Pain Through Facial Expression Detection with Patients Experiencing Chest Pain
2024-Dec-25, Diagnostics (Basel, Switzerland)
DOI:10.3390/diagnostics15010017
PMID:39795545
|
研究论文 | 本文开发了一种基于面部表情的计算机辅助胸痛检测系统,旨在改善患者护理服务并减少心脏损伤 | 利用YOLO模型通过面部表情检测胸痛,为急诊护理提供了一种新的辅助工具 | 研究中未提及样本的具体数量和多样性,可能影响模型的泛化能力 | 开发一种基于面部表情的自动胸痛检测系统,以提高患者护理服务的效率 | 经历胸痛的患者 | 计算机视觉 | 心血管疾病 | 深度学习 | YOLO (YOLOv4, YOLOv6, YOLOv7) | 图像 | 未提及具体样本数量 |
8834 | 2025-01-14 |
Deep Learning for Melanoma Detection: A Deep Learning Approach to Differentiating Malignant Melanoma from Benign Melanocytic Nevi
2024-Dec-25, Cancers
IF:4.5Q1
DOI:10.3390/cancers17010028
PMID:39796659
|
研究论文 | 本研究评估并比较了四种卷积神经网络(CNN)架构在皮肤镜图像二分类中的性能,以区分恶性黑色素瘤和良性黑色素细胞痣 | 比较了四种CNN架构(DenseNet121、ResNet50V2、NASNetMobile和MobileNetV2)在黑色素瘤检测中的性能,并评估了它们在准确性、AUC-ROC、推理时间和模型大小方面的表现 | 研究仅基于单一数据集(DermNet),未涉及其他数据集或临床环境中的验证 | 通过深度学习技术提高黑色素瘤的早期检测准确性 | 皮肤镜图像 | 计算机视觉 | 黑色素瘤 | 卷积神经网络(CNN) | DenseNet121, ResNet50V2, NASNetMobile, MobileNetV2 | 图像 | 8825张皮肤镜图像 |
8835 | 2025-01-14 |
Intelligent Pattern Recognition Using Distributed Fiber Optic Sensors for Smart Environment
2024-Dec-25, Sensors (Basel, Switzerland)
DOI:10.3390/s25010047
PMID:39796837
|
研究论文 | 本文提出了一种基于分布式光纤传感器和深度学习技术的智能模式识别方法,用于智能环境中的入侵检测 | 提出了一种创新的干涉传感方法,结合Mach-Zehnder干涉仪和时间森林神经网络(TFNN),以提高入侵检测的准确性和效率 | 传统神经网络的高复杂性和计算需求,以及背向散射方法需要信号传播两倍距离的低效性 | 提高分布式光纤传感器在智能环境中的入侵检测性能 | 分布式光纤传感器(DFOSs) | 机器学习 | NA | Mach-Zehnder干涉仪(MZI)和时间森林神经网络(TFNN) | 时间森林神经网络(TFNN) | 信号数据 | NA |
8836 | 2025-01-14 |
Using Infrared Raman Spectroscopy with Machine Learning and Deep Learning as an Automatic Textile-Sorting Technology for Waste Textiles
2024-Dec-25, Sensors (Basel, Switzerland)
DOI:10.3390/s25010057
PMID:39796848
|
研究论文 | 本研究开发了一种基于拉曼光谱和人工智能的高精度纺织品分类技术,用于废弃纺织品的自动分类,以提高回收纤维的质量 | 结合拉曼光谱和多种AI技术(PCA、KNN、SVM、RF、ANN、CNN),实现了每秒1件的分类效率,且分类精度超过95% | 未提及具体样本量及实验环境限制 | 解决循环经济中纺织品高效回收的迫切需求 | 废弃纺织品 | 机器学习和光谱分析 | NA | 拉曼光谱 | PCA、KNN、SVM、RF、ANN、CNN | 光谱数据 | NA |
8837 | 2025-01-14 |
Parkinson's Disease Prediction: An Attention-Based Multimodal Fusion Framework Using Handwriting and Clinical Data
2024-Dec-24, Diagnostics (Basel, Switzerland)
DOI:10.3390/diagnostics15010004
PMID:39795532
|
研究论文 | 本文介绍了一种基于深度学习的多模态诊断框架(PMMD),用于通过手写和临床数据准确检测帕金森病(PD) | 该框架首次引入了跨模态注意力机制,用于建模不同数据模态之间的交互 | 未明确提及研究的局限性 | 旨在通过多模态数据融合提高帕金森病的早期诊断准确性 | 帕金森病患者 | 数字病理学 | 帕金森病 | 深度学习 | 跨模态注意力机制 | 图像、手写、绘图和临床数据 | 未明确提及样本数量 |
8838 | 2025-01-14 |
Toward Robust Lung Cancer Diagnosis: Integrating Multiple CT Datasets, Curriculum Learning, and Explainable AI
2024-Dec-24, Diagnostics (Basel, Switzerland)
DOI:10.3390/diagnostics15010001
PMID:39795530
|
研究论文 | 本研究提出了一种基于深度学习的新模型,旨在提高肺癌诊断的质量、可理解性和泛化能力 | 该研究通过整合多个CT数据集、采用mixup增强技术和课程学习策略,提升了模型的泛化能力和鲁棒性,并利用可解释人工智能(XAI)技术增强了模型的可解释性 | 尽管模型在多个数据集上表现优异,但其在更广泛临床环境中的实际应用仍需进一步验证 | 提高肺癌诊断的准确性、可理解性和泛化能力 | 肺癌诊断 | 计算机视觉 | 肺癌 | 深度学习 | 深度学习模型 | CT图像 | 五个CT数据集 |
8839 | 2025-01-14 |
Graphical Feature Construction-Based Deep Learning Model for Fatigue Life Prediction of AM Alloys
2024-Dec-24, Materials (Basel, Switzerland)
DOI:10.3390/ma18010011
PMID:39795656
|
研究论文 | 本文提出了一种基于卷积神经网络的机器学习模型,用于预测增材制造合金的疲劳寿命 | 通过引入Shapley加性解释和Pearson相关系数分析,将数值特征转换为图形特征,并结合注意力机制优先处理图像输入中的重要区域 | 模型仅在两种激光粉末床熔融制造的金属上进行了验证,可能需要进一步扩展到其他材料 | 提高增材制造合金疲劳寿命预测的准确性 | 增材制造合金 | 机器学习 | NA | 卷积神经网络 | CNN | 图像 | 两种激光粉末床熔融制造的金属 |
8840 | 2025-01-14 |
FFL-IDS: A Fog-Enabled Federated Learning-Based Intrusion Detection System to Counter Jamming and Spoofing Attacks for the Industrial Internet of Things
2024-Dec-24, Sensors (Basel, Switzerland)
DOI:10.3390/s25010010
PMID:39796800
|
研究论文 | 本文提出了一种基于雾计算和联邦学习的入侵检测系统(FFL-IDS),用于应对工业物联网(IIoT)中的干扰和欺骗攻击 | 结合雾计算和联邦学习,解决了传统入侵检测系统在可扩展性和数据隐私方面的问题,并实现了低延迟检测 | NA | 开发一种能够应对工业物联网中干扰和欺骗攻击的入侵检测系统 | 工业物联网(IIoT)网络 | 机器学习 | NA | NA | 卷积神经网络(CNN) | 网络数据 | 两个数据集:Edge-IIoTset 和 CIC-IDS2017 |