本数据库通过收集和整理最新科研文献信息而得,供了解领域前沿进展之用。数据源自 PubMed Data ,每日自动更新(使用关键词“['deep learning']”过滤),已收录文献数量参见 统计表格。表格内容由 GPT 自动整理,可能存在错误或遗漏,请使用时务必注意核实!
如有建议或合作意向,欢迎联系 linlin.yan(AT)bioinfo.app 或 微信 yanlinlin82。本项目遵循 MIT 许可 发布,欢迎下载 源码 自行修改使用。如觉得不错,还请不吝 给我打赏,你的支持是我继续创新的重要动力!


除通过在线浏览外,为方便用户离线查阅,本站也提供 付费下载(定价19.9元)。之所以考虑收费,是因为批量扫描这些文献并整理也是有一定成本的,还请理解并多多支持。本站数据会持续更新,而仅需一次付费,未来就可以随时重新下载到最新版本数据。
| 序号 | 推送日期 | 文章 | 类型 | 简述 | 创新点 | 不足 | 研究目的 | 研究对象 | 领域 | 病种 | 技术 | 模型 | 数据类型 | 样本量 | 算法框架 | 模型架构 | 性能指标 | 计算资源 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 961 | 2026-01-29 |
Explainable AI-driven MRI-based brain tumor classification: a novel deep learning approach
2025, Frontiers in artificial intelligence
IF:3.0Q2
DOI:10.3389/frai.2025.1700214
PMID:41584219
|
研究论文 | 本研究提出了一种基于可解释人工智能(XAI)的深度学习框架,用于MRI脑肿瘤分类 | 结合了可解释AI技术(如Grad-CAM、LIME)来可视化模型决策过程,并探索了与大型语言模型(LLMs)的未来集成潜力 | 未明确说明样本来源、数据集大小或计算资源的具体细节,可能影响结果的可重复性和泛化性 | 开发一个高效的深度学习框架,用于基于MRI数据的脑肿瘤分类,以辅助精确诊断和治疗规划 | MRI图像中的脑肿瘤,分类为正常、胶质瘤、垂体瘤和脑膜瘤四类 | 计算机视觉 | 脑肿瘤 | MRI | CNN | 图像 | NA | NA | DenseNet50, VGG19, 4-conv-1-dense-1-dropout CNN | 准确率 | NA |
| 962 | 2026-01-29 |
Detection of protein-losing enteropathy (PLE) ultrasonographic imaging features in dogs using deep learning neural networks
2025, Frontiers in artificial intelligence
IF:3.0Q2
DOI:10.3389/frai.2025.1707957
PMID:41584227
|
研究论文 | 本研究利用深度学习神经网络开发了一个基于超声图像的模型,用于区分犬类中的蛋白质丢失性肠病(PLE)与非PLE的慢性炎症性肠病(CIE)病例 | 首次在兽医学中应用AI工具,通过深度学习模型从超声图像中自动检测PLE相关特征,提高了诊断的准确性和效率 | 研究为试点性质,样本量较小(仅59只犬),可能影响模型的泛化能力,且未在更广泛的数据集上进行验证 | 开发一个AI模型,以辅助犬类慢性炎症性肠病(CIE)和蛋白质丢失性肠病(PLE)的诊断和亚分类 | 犬类(59只)的超声图像数据,用于区分PLE与非PLE的CIE病例 | 数字病理学 | 蛋白质丢失性肠病 | 超声成像(B-mode) | 深度学习神经网络 | 图像 | 59只犬的超声图像数据 | NA | NA | 准确率, 精确率, 召回率, F1分数, AUC-ROC | NA |
| 963 | 2026-01-29 |
Genetic risk predictions using deep learning models with summary data
2025, Frontiers in bioinformatics
IF:2.8Q2
DOI:10.3389/fbinf.2025.1657021
PMID:41584515
|
研究论文 | 本文探讨了在仅能获取遗传汇总数据(如连锁不平衡矩阵)的情况下,深度学习模型在遗传风险预测中的潜在应用 | 首次系统评估了深度学习模型(包括深度神经网络、卷积神经网络、循环神经网络和Transformer)在仅使用遗传汇总数据而非个体级数据时的预测性能,并发现其误差相当 | 研究依赖于模拟和真实数据分析,但可能未涵盖所有遗传结构或疾病类型;隐私和数据共享限制的实际影响未完全量化 | 评估深度学习模型在仅使用遗传汇总数据时进行遗传风险预测的可行性与性能 | 遗传汇总数据(如连锁不平衡矩阵)与个体级遗传数据 | 机器学习 | NA | 遗传汇总数据分析 | 深度神经网络, 卷积神经网络, 循环神经网络, Transformer | 遗传汇总数据, 个体级遗传数据 | NA | NA | NA | 均方误差 | NA |
| 964 | 2026-01-29 |
Recent advance in early oral lesion diagnosis: the application of artificial intelligence-assisted endoscopy
2025, Frontiers in oncology
IF:3.5Q2
DOI:10.3389/fonc.2025.1686356
PMID:41584615
|
综述 | 本文综述了人工智能辅助内窥镜技术在口腔鳞状细胞癌早期诊断中的应用、进展与挑战 | 系统总结了AI模型(如Mask R-CNN、U-Net)在内窥镜图像自动病变检测、分割和分类中的最新应用,并探讨了在资源有限地区的应用潜力 | 存在标准化数据集缺乏、预处理方法需优化、AI模型过拟合风险、伦理与数据隐私问题以及临床验证不足等挑战 | 优化口腔鳞状细胞癌的早期诊断与管理,改善患者预后并减轻全球疾病负担 | 口腔黏膜病变,特别是口腔鳞状细胞癌的早期病变 | 计算机视觉 | 口腔鳞状细胞癌 | 白光成像、窄带成像、自体荧光成像等内窥镜技术 | 深度学习模型 | 内窥镜图像 | NA | NA | Mask R-CNN, U-Net | NA | NA |
| 965 | 2026-01-29 |
Enhancing multiclass plant disease classification using GAN-boosted vision transformer with XAI insights
2025, Frontiers in plant science
IF:4.1Q1
DOI:10.3389/fpls.2025.1649399
PMID:41584666
|
研究论文 | 提出了一种名为GRG-ViT的新型多类别水稻叶片病害识别模型,该模型集成了Vision Transformer、生成式人工智能和可解释人工智能技术 | 提出了一种结合Vision Transformer、生成式人工智能和可解释人工智能的新型混合模型,并引入了混合ReLU-GELU激活机制以提升特征表示能力 | NA | 解决水稻叶片病害识别问题,以支持精准农业 | 水稻叶片图像 | 计算机视觉 | 植物病害 | 深度学习 | Vision Transformer, GAN | 图像 | NA | NA | Vision Transformer | 准确率 | NA |
| 966 | 2026-01-29 |
Deep learning-based approaches for weed detection in crops
2025, Frontiers in plant science
IF:4.1Q1
DOI:10.3389/fpls.2025.1746406
PMID:41584680
|
综述 | 本文综述了基于深度学习的杂草检测方法,重点关注目标检测、图像分割和图像分类三大模型家族,并分析了其优势、局限及未来发展方向 | 系统性地总结了深度学习在杂草检测中的最新进展,并讨论了基于作物的间接检测、半监督学习和模型-执行器集成等新兴解决方案 | 面临数据集稀缺、标注成本高、杂草形态多变以及实时部署限制等主要挑战 | 为开发下一代智能除草系统提供指导,推动可扩展、数据高效和精准集成的杂草管理 | 农作物中的杂草 | 计算机视觉 | NA | 深度学习 | 目标检测, 图像分割, 图像分类 | 图像 | NA | NA | NA | NA | NA |
| 967 | 2026-01-29 |
Osteosarcopenia: key molecular mechanisms and translational perspectives
2025, Frontiers in physiology
IF:3.2Q2
DOI:10.3389/fphys.2025.1723522
PMID:41584796
|
综述 | 本文构建了一个“细胞内-细胞间-系统”的层次框架,系统阐述了骨少肌症的发病机制,并探讨了前沿干预措施及其临床转化前景 | 提出从单器官病理研究转向多维相互作用阐释的“细胞内-细胞间-系统”分层框架,以系统理解骨少肌症的发病机制 | NA | 为骨少肌症的机制研究领域提供参考,并为该疾病的精准防治提供新思路 | 骨少肌症(骨质疏松与肌肉减少症共存的综合征) | NA | 老年病 | 深度学习CT分析 | NA | NA | NA | NA | NA | NA | NA |
| 968 | 2026-01-29 |
Developing a Deep Learning Approach for Automated Body Composition Prediction in Newborns Using Ultrasound Images
2025, IEEE access : practical innovations, open solutions
IF:3.4Q2
DOI:10.1109/access.2025.3639889
PMID:41585011
|
研究论文 | 本研究开发了一种基于深度学习的方法,利用新生儿超声图像自动预测身体成分(脂肪质量和去脂质量) | 首次将深度学习应用于超声图像以实现人体成分的自动预测,并探索了新的超声扫描协议和图像处理流程 | 样本量较小(仅65名早产儿),且仅针对特定解剖位置(肱二头肌、腹部和股四头肌)的超声图像 | 开发一种自动化的身体成分预测方法,以评估营养不良并指导营养干预 | 早产新生儿的超声图像及其对应的身体成分测量数据 | 计算机视觉 | 营养不良 | 超声成像 | CNN | 图像 | 65名早产婴儿 | NA | EfficientNet-B1 | 平均绝对百分比误差(MAPE) | NA |
| 969 | 2026-01-29 |
Applications, image analysis, and interpretation of computer vision in medical imaging
2025, Frontiers in radiology
DOI:10.3389/fradi.2025.1733003
PMID:41585084
|
综述 | 本文综述了计算机视觉在医学影像中的当前进展、应用及研究前景 | 总结了计算机视觉在提升医学影像诊断准确性、改善患者护理和操作效率方面的革命性作用,并强调了深度学习算法特别是卷积神经网络在医学图像分割中的关键应用 | NA | 探讨计算机视觉在医学影像中的应用、图像分析及解释,以推动医疗实践的发展 | 医学影像数据,包括胸部CT扫描、脑部扫描等 | 计算机视觉 | 肺癌, 阿尔茨海默病 | 深度学习, 卷积神经网络 | CNN | 图像 | NA | NA | NA | 灵敏度 | NA |
| 970 | 2026-01-29 |
Early prediction of diabetic retinopathy using a multimodal deep learning framework integrating fundus and OCT imaging
2025, Frontiers in medicine
IF:3.1Q1
DOI:10.3389/fmed.2025.1741146
PMID:41585223
|
研究论文 | 本研究提出了一种融合眼底和OCT成像的多模态深度学习框架,用于早期预测糖尿病视网膜病变 | 通过基于注意力的加权机制融合眼底和OCT图像的结构与空间特征,实现多模态诊断 | 数据集规模有限,结果仅为初步,需在更大更多样化数据集上验证 | 开发一种用于早期糖尿病视网膜病变评估的多模态诊断框架 | 糖尿病视网膜病变患者 | 计算机视觉 | 糖尿病视网膜病变 | 眼底摄影,光学相干断层扫描(OCT) | 深度学习 | 图像 | 222张高质量配对图像(111张眼底 + 111张OCT) | NA | NA | 准确率,AUC-ROC | NA |
| 971 | 2026-01-29 |
From radiomics to transformers in pancreatic cancer detection and prognosis
2025, Frontiers in medicine
IF:3.1Q1
DOI:10.3389/fmed.2025.1731922
PMID:41585265
|
系统综述 | 本文系统回顾了从放射组学到Transformer模型在胰腺癌检测和预后中的应用进展 | 提出AI方法的代际分类法,整合多模态数据,并评估数据可用性、使用和样本规模的趋势 | 泛化性、外部验证、模型校准和转化准备方面存在局限性 | 改善胰腺导管腺癌的早期检测和个性化预后 | 胰腺导管腺癌(PDAC) | 医学影像 | 胰腺癌 | NA | 机器学习, 深度学习, Transformer | 影像, 病理, 分子数据 | NA | NA | NA | NA | NA |
| 972 | 2026-01-29 |
Artificial intelligence-assisted quantification of fundus tessellation in early-onset high myopia
2025, Frontiers in medicine
IF:3.1Q1
DOI:10.3389/fmed.2025.1663903
PMID:41585272
|
研究论文 | 本研究利用人工智能辅助的图像分析技术,定量评估了早发性高度近视儿童的眼底镶嵌密度,并探讨了其与眼轴长度的关联 | 首次在早发性高度近视儿童中,采用深度学习算法对眼底镶嵌密度进行定量分析,并揭示了其与眼轴长度的区域特异性关联 | 样本量较小(47只眼),且为横断面研究,无法确定因果关系 | 定量评估早发性高度近视儿童的眼底镶嵌密度,并探索其与眼轴长度的关系 | 年龄≤6岁的早发性高度近视儿童 | 计算机视觉 | 高度近视 | 超广角眼底摄影 | 深度学习 | 图像 | 31名儿童的47只眼 | NA | NA | NA | NA |
| 973 | 2026-01-28 |
Bridging neuromorphic computing and deep learning for next-generation neural data interpretation
2025, Frontiers in computational neuroscience
IF:2.1Q3
DOI:10.3389/fncom.2025.1737839
PMID:41585347
|
NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
| 974 | 2026-01-29 |
ATOMIC: a graph attention network for atopic dermatitis prediction using human gut microbiome
2025, Frontiers in immunology
IF:5.7Q1
DOI:10.3389/fimmu.2025.1670993
PMID:41583462
|
研究论文 | 本文提出了一种名为ATOMIC的图注意力网络模型,用于利用人类肠道微生物组预测特应性皮炎 | ATOMIC是一种可解释的图注意力网络模型,它整合了微生物共表达网络,以捕捉复杂的微生物相互作用并融入微生物基因组信息,从而提高了预测特应性皮炎的能力和模型的可解释性 | 模型主要基于韩国江原国立大学医院的99个肠道微生物组样本进行训练和测试,样本量相对较小,可能限制了模型的泛化能力 | 开发一种基于机器学习的模型,用于预测特应性皮炎,并识别与疾病相关的关键微生物类群 | 成年特应性皮炎患者和健康对照者的肠道微生物组样本 | 机器学习 | 特应性皮炎 | 肠道微生物组测序 | 图注意力网络 | 微生物组丰度数据 | 99个肠道微生物组样本(来自特应性皮炎患者和健康对照者) | PyTorch | 图注意力网络 | AUROC, AUPRC | NA |
| 975 | 2026-01-29 |
AI-driven transformation of precision medicine: a comprehensive narrative review of key application areas, emerging paradigms, and future directions
2025, Frontiers in public health
IF:3.0Q2
DOI:10.3389/fpubh.2025.1656603
PMID:41584179
|
综述 | 本文全面阐述了人工智能在推动精准医学范式转变中的关键作用,分析了其在诊断、治疗、药物研发及健康管理等领域的应用、挑战与未来方向 | 系统性地整合了AI在精准医学全价值链中的应用,并提出了共生人工智能(SAI)这一以人为本的协作框架作为未来发展方向 | 作为叙述性综述,其证据基础可能不均,且未进行定量荟萃分析;所面临的模型泛化性不足、数据隐私和算法公平性等挑战在文中被指出但未提供具体解决方案 | 阐明人工智能在驱动精准医学转型中的关键角色,分析其如何将医疗系统从传统诊疗模式重塑为个性化健康管理生态系统 | 人工智能在精准医学领域的创新应用、范式转变及未来前景 | 自然语言处理, 机器学习 | NA | 深度学习, 机器学习, 自然语言处理 | NA | 医学影像, 基因组学数据, 多模态数据 | NA | NA | NA | NA | NA |
| 976 | 2026-01-29 |
A Review of Deep Learning Techniques for EEG-Based Emotion Recognition: Models, Methods, and Datasets
2025, F1000Research
DOI:10.12688/f1000research.171170.1
PMID:41585461
|
综述 | 本文系统综述了基于脑电图(EEG)和深度学习(DL)的情感识别(ER)方法、模型和数据集 | 遵循PRISMA指南,对2020年至2025年间233篇相关文献进行系统性回顾,并评估了公共数据集在刺激程序和情感表征方面的多样性 | 作为综述文章,不涉及原始实验验证,结论依赖于现有文献的质量和覆盖范围 | 概述基于深度学习的EEG情感识别方法,并为未来研究提供方向 | 使用深度学习架构处理EEG信号进行情感识别的研究 | 机器学习 | NA | 脑电图(EEG) | 深度学习(DL) | EEG信号 | 涵盖233篇研究文章 | NA | NA | 分类准确性、模型效率 | NA |
| 977 | 2026-01-29 |
Deep learning for segmentation of colorectal carcinomas on endoscopic ultrasound
2024-12-13, Techniques in coloproctology
IF:2.7Q1
DOI:10.1007/s10151-024-03056-5
PMID:39671056
|
研究论文 | 本研究开发了一种基于卷积神经网络的深度学习模型,用于自动分割内镜超声图像中的结直肠癌肿瘤、黏膜下层和肌层,以标准化早期直肠癌的浸润深度评估 | 首次将深度学习应用于内镜超声图像的自动分割,以解决早期直肠癌浸润深度评估中磁共振成像分辨率不足和内镜超声解释依赖操作者的问题 | 研究样本量相对较小(基于373个专家手动分割),且结果仅反映与手动分割的一致性,未直接验证临床预后 | 开发自动化图像分割方法以标准化内镜超声对早期直肠癌浸润深度的解释 | 早期直肠癌的内镜超声图像 | 计算机视觉 | 结直肠癌 | 内镜超声 | CNN | 图像 | 373个专家手动分割的内镜超声图像 | NA | NA | 平均表面距离, 豪斯多夫距离, Dice相似性指数 | NA |
| 978 | 2026-01-29 |
Deep Learning-Based Prediction of Final Infarct Core from CT Perfusion Data: A Comparison to the Clinical Standard
2024-Nov, Stroke (Hoboken, N.J.)
DOI:10.1161/SVIN.124.001375
PMID:41583397
|
研究论文 | 本研究开发了一种基于深度学习的CT灌注概率模型,用于预测急性缺血性卒中患者的最终梗死核心,并与临床标准方法进行比较 | 提出了一种从单值阈值转向概率模型的CT灌注分析方法,利用深度学习(Attention U-Net)更准确地预测组织命运,优于传统的核心/半暗带二分法 | 研究为回顾性设计,样本量有限(共243例患者,测试集仅48例),且仅针对大血管闭塞并完全再通的患者,可能限制结果的普适性 | 改进急性缺血性卒中的CT灌注分析,通过概率模型更准确地预测最终梗死核心,以支持临床决策 | 急性缺血性卒中患者,特别是大血管闭塞并在血栓切除术后完全再通的患者 | 数字病理学 | 心血管疾病 | CT灌注成像,扩散加权成像 | 深度学习 | 医学影像(CT灌注数据) | 243例患者(训练、验证和测试组) | MONAI | Attention U-Net | 多样化反事实解释评分,曲线下面积 | NA |
| 979 | 2026-01-29 |
Do Deep Learning Algorithms Accurately Segment Intracerebral Hemorrhages on Noncontrast Computed Tomography? A Systematic Review and Meta-Analysis
2024-Jul, Stroke (Hoboken, N.J.)
DOI:10.1161/SVIN.123.001314
PMID:41585382
|
系统综述与荟萃分析 | 本文通过系统综述和荟萃分析评估深度学习算法在非增强计算机断层扫描上分割脑出血的准确性 | 首次对深度学习在非增强CT上分割脑出血的准确性进行全面的系统综述和荟萃分析,揭示了算法在不同出血病因中的性能差异 | 分割小出血灶仍存在挑战,且需要进一步研究以解决局限性并扩展临床实用性 | 评估深度学习算法在非增强CT上分割脑出血的精确性 | 脑出血(ICH)在非增强计算机断层扫描上的分割 | 医学影像分析 | 脑出血 | 非增强计算机断层扫描 | CNN | 医学影像(CT图像) | 28项研究(主要为回顾性队列) | NA | U-Net及其变体 | Dice相似系数 | NA |
| 980 | 2026-01-29 |
A framework for the unsupervised and semi-supervised analysis of visual frames
2024-Apr, Political analysis : an annual publication of the Methodology Section of the American Political Science Association
IF:4.7Q1
PMID:41450450
|
研究论文 | 本文介绍了一个用于通过无监督和半监督方法分析视觉材料内容的框架,并应用于政治科学领域 | 将计算机视觉中的视觉词袋技术引入政治科学,用于构建图像-视觉词矩阵,并开发了一种新颖的视觉结构主题模型 | NA | 开发一个框架,用于对视觉材料进行无监督和半监督分析,以识别视觉框架 | 来自中美洲移民大篷车图片的视觉框架 | 计算机视觉 | NA | 视觉词袋 | 主题模型 | 图像 | NA | NA | 视觉结构主题模型 | NA | NA |