本数据库通过收集和整理最新科研文献信息而得,供了解领域前沿进展之用。数据源自 PubMed Data ,每日自动更新,已收录文献数量参见 统计表格。表格内容由 GPT 自动整理,可能存在错误或遗漏,请使用时务必注意核实!
如有建议或合作意向,欢迎联系 linlin.yan(AT)bioinfo.app 或 微信 yanlinlin82。本项目遵循 MIT 许可 发布,欢迎下载 源码 自行修改使用。如觉得不错,还请不吝 给我打赏,你的支持是我继续创新的重要动力!
除通过在线浏览外,为方便用户离线查阅,本站也提供 付费下载(定价10元)。之所以考虑收费,是因为批量扫描这些文献并整理也是有一定成本的,还请理解并多多支持。本站数据会持续更新,而仅需一次付费,未来就可以随时重新下载到最新版本数据。
序号 | 推送日期 | 文章 | 类型 | 简述 | 创新点 | 不足 | 研究目的 | 研究对象 | 领域 | 病种 | 技术 | 模型 | 数据类型 | 样本量 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
981 | 2025-05-07 |
The Application Status of Radiomics-Based Machine Learning in Intrahepatic Cholangiocarcinoma: Systematic Review and Meta-Analysis
2025-May-05, Journal of medical Internet research
IF:5.8Q1
DOI:10.2196/69906
PMID:40323647
|
系统综述与荟萃分析 | 本文通过系统综述和荟萃分析探讨了基于放射组学的机器学习在肝内胆管癌(ICC)中的应用现状和价值 | 首次系统评估了放射组学在ICC诊断中的准确性,并比较了不同模型(如结合临床特征的模型和深度学习模型)的性能 | 针对特定任务(如神经周围浸润和三级淋巴结构诊断)的研究较少,深度学习研究有限,数据异质性和可解释性问题待优化 | 评估放射组学在ICC中的临床应用价值,为其系统化应用提供循证支持 | 肝内胆管癌(ICC)患者 | 数字病理 | 肝内胆管癌 | 放射组学 | 机器学习(ML)、深度学习 | 医学影像数据 | 58项研究,共12,903名患者 |
982 | 2025-05-07 |
An End-to-End Deep Learning Generative Framework for Refinable Shape Matching and Generation
2025-May-05, IEEE transactions on medical imaging
IF:8.9Q1
DOI:10.1109/TMI.2025.3562756
PMID:40323742
|
research paper | 提出了一种端到端的深度学习生成框架,用于可精细化形状匹配和生成,以支持计算机医学中的虚拟临床试验 | 开发了一种无监督的几何深度学习模型,用于在潜在空间中建立可精细化形状对应关系,构建基于群体的图谱,并生成逼真的合成形状 | NA | 构建AI模型以生成与真实网格样本相似的形状,支持虚拟临床试验 | 3D表面网格表示的解剖形状 | computer vision | NA | geometric deep-learning | generative model | 3D surface meshes | 实验使用了肝脏和左心室模型 |
983 | 2025-05-07 |
Contactless Estimation of Respiratory Frequency Using 3D-CNN on Thermal Images
2025-May-05, IEEE journal of biomedical and health informatics
IF:6.7Q1
DOI:10.1109/JBHI.2025.3567141
PMID:40323749
|
研究论文 | 本文提出了一种基于深度学习的无接触呼吸频率估计方法,使用3D-CNN处理热成像视频数据 | 无需复杂预处理和手动ROI跟踪,直接从原始热成像视频估计呼吸频率 | 在小型数据集上训练,验证R2分数约为0.61,仍有提升空间 | 开发一种无接触的呼吸频率监测方法,提高热成像在实际应用中的可行性 | 热成像视频数据 | 计算机视觉 | NA | 热成像技术 | 3D-CNN | 视频 | 未明确说明样本数量,使用了数据增强和合成数据集进行训练 |
984 | 2025-05-07 |
Deep Learning on Misaligned Dual-Energy Chest X-ray Images Using Paired Cycle-Consistent Generative Adversarial Networks
2025-May-05, Journal of imaging informatics in medicine
DOI:10.1007/s10278-025-01508-4
PMID:40325327
|
研究论文 | 提出了一种基于配对循环一致性生成对抗网络的框架,用于有效去除双能胸部X射线图像中的运动伪影和统计噪声 | 结合了集成判别器、可微分增强、抗锯齿卷积层和基本的8层U-Net生成器,显著提高了运动伪影抑制和图像质量 | 研究仅基于600次检查的临床图像数据集,可能需要更大样本量以验证方法的普适性 | 改善双能胸部X射线图像的质量,减少运动伪影和统计噪声 | 双能胸部X射线图像 | 计算机视觉 | NA | 双能减影(DES)胸部X射线成像 | 配对循环一致性生成对抗网络(GAN)、U-Net | 图像 | 600次双能胸部X射线检查的数据 |
985 | 2025-05-07 |
A Deep Learning-Based Framework for Automatic Determination of Developmental Dysplasia of the Hip from Graf Angles
2025-May-05, Journal of imaging informatics in medicine
DOI:10.1007/s10278-025-01518-2
PMID:40325325
|
研究论文 | 提出了一种基于深度学习的框架,用于从Graf角度自动确定发育性髋关节发育不良(DDH) | 结合DeepLabv3+、形态学操作和局部最大值方法,自动诊断新生儿DDH,减少操作者依赖性和测量变异性 | 未提及具体样本量及临床验证的广泛性 | 开发自动化工具以提高DDH超声诊断的准确性和一致性 | 新生儿髋关节超声图像 | 数字病理学 | 发育性髋关节发育不良 | 超声成像 | DeepLabv3+(测试了ResNet50、InceptionResNetV2、MobilenetV2和Xception等主干网络) | 图像 | NA |
986 | 2025-05-07 |
Forecasting climate change effects on Saline Lakes through advanced remote sensing and deep learning
2025-May-04, The Science of the total environment
DOI:10.1016/j.scitotenv.2025.179582
PMID:40324314
|
研究论文 | 本研究通过先进的遥感和深度学习技术,预测气候变化对盐湖的影响 | 结合SRGAN和MRS技术提升卫星图像分辨率,并利用CA-Markov模型和LSTM算法预测未来盐湖变化 | 研究基于RCP8.5情景预测,可能无法涵盖所有气候变化可能性 | 分析盐湖的长期变化,预测未来特征变化及其对周边生态系统的生态影响 | 盐湖(如Chaka、Tuz和Razzaza湖)的物理和化学特性 | 遥感与深度学习 | NA | 遥感、SRGAN、MRS、CA-Markov模型、LSTM算法 | SRGAN、LSTM | 卫星图像 | Chaka、Tuz和Razzaza湖的数据 |
987 | 2025-05-07 |
Development of a Novel Machine Learning Model to Automate Vertebral Column Segmentation Utilizing Biplanar Full-body Imaging
2025-May-03, The spine journal : official journal of the North American Spine Society
DOI:10.1016/j.spinee.2025.05.003
PMID:40324481
|
研究论文 | 开发了一种新型机器学习模型,用于自动化利用双平面全身成像进行脊柱分割 | 采用两阶段深度学习模型结合UNET架构,能够准确分割包含复杂脊柱病理和脊柱器械噪声的图像 | 研究为回顾性设计,样本量相对较小(250张图像) | 开发能够自动化从双平面全身X光图像中分割脊柱的人工智能算法 | 退变性脊柱侧凸(DS)患者的双平面全身X光图像 | 计算机视觉 | 退变性脊柱侧凸 | 双平面全身X光成像 | CNN(UNET架构) | 图像 | 250张患者图像(包含DS阳性和阴性样本) |
988 | 2025-05-07 |
Multimodal Radiomics Integrating Deep Learning and Clinical Features for Diagnosing Multidrug-Resistant Tuberculosis in HIV/AIDS Patients
2025-May-03, Journal of global antimicrobial resistance
IF:3.7Q2
DOI:10.1016/j.jgar.2025.04.013
PMID:40324593
|
research paper | 本研究旨在开发和验证一个基于多模态数据的预测模型,用于区分HIV/AIDS患者中的多药耐药结核病(MDR-TB),以提高诊断准确性 | 通过整合临床特征、放射组学特征和深度学习特征,构建了一个多模态模型,显著提高了MDR-TB的诊断效能 | 研究为回顾性研究,样本量相对较小(n=227),且数据来源于单一医院 | 提高HIV/AIDS患者中多药耐药结核病(MDR-TB)的诊断准确性 | HIV/AIDS患者中的药物敏感结核病(n=164)和多药耐药结核病(MDR-TB,n=63)患者 | digital pathology | tuberculosis | 2.5D multi-instance learning (MIL) | integrated model (clinical model, radiomics model, 2.5D MIL) | multimodal data (clinical features, radiomics features, deep learning features) | 227 patients (164 drug-sensitive tuberculosis and 63 MDR-TB) |
989 | 2025-05-07 |
Artificial intelligence (AI) in point-of-care testing
2025-May-03, Clinica chimica acta; international journal of clinical chemistry
DOI:10.1016/j.cca.2025.120341
PMID:40324611
|
review | 本文探讨了人工智能在即时检测(POCT)中的应用及其对现代医疗的变革性影响 | 通过卷积神经网络提高疟疾检测灵敏度至95%,预测分析减少设备停机时间20%,以及实时数据合成减少抗生素滥用40% | 数据隐私风险、算法不透明性以及中低收入国家的基础设施差距 | 探讨人工智能如何提升即时检测的准确性、效率和可及性 | 即时检测(POCT)中的AI技术应用 | machine learning | malaria, cardiovascular disease | machine learning, deep learning, natural language processing | CNN | NA | NA |
990 | 2025-05-07 |
A transformer-based framework for temporal health event prediction with graph-enhanced representations
2025-May-03, Journal of biomedical informatics
IF:4.0Q2
DOI:10.1016/j.jbi.2025.104826
PMID:40324665
|
研究论文 | 提出了一种结合图学习和Transformer框架的深度学习方法GLT-Net,用于预测时序健康事件 | 通过构建患者关联图和诊断代码嵌入预训练,利用图神经网络增强特征表示,并结合Transformer框架捕捉历史入院记录的依赖关系 | 未提及具体的数据集规模限制或模型计算复杂度 | 预测时序健康事件,深入理解患者健康状况和疾病趋势 | 患者入院记录和诊断代码 | 机器学习 | NA | 图神经网络, Transformer | GLT-Net | 时序健康事件数据 | 未提及具体样本数量 |
991 | 2025-05-07 |
KanCell: dissecting cellular heterogeneity in biological tissues through integrated single-cell and spatial transcriptomics
2025-May, Journal of genetics and genomics = Yi chuan xue bao
DOI:10.1016/j.jgg.2024.11.009
PMID:39577768
|
研究论文 | KanCell是一种基于Kolmogorov-Arnold网络(KAN)的深度学习模型,旨在通过整合单细胞RNA测序和空间转录组学(ST)数据来增强细胞异质性分析 | KanCell利用KAN有效捕捉非线性关系并优化计算效率,提供了一种准确高效的空间转录组学分析工具 | NA | 提高细胞异质性分析的准确性和效率,揭示疾病微环境并识别治疗靶点 | 单细胞RNA测序和空间转录组学数据 | 数字病理学 | 黑色素瘤, 乳腺癌 | 单细胞RNA测序, 空间转录组学 | KAN | 基因表达数据 | 模拟和真实数据集(包括人类淋巴结、心脏、黑色素瘤、乳腺癌、背外侧前额叶皮层和小鼠胚胎大脑) |
992 | 2025-05-07 |
Have We Solved Glottis Segmentation? Review and Commentary
2025-May, Journal of voice : official journal of the Voice Foundation
IF:2.5Q1
DOI:10.1016/j.jvoice.2024.11.037
PMID:39645484
|
comments | 本文回顾并评论了声门分割的研究现状及未来发展方向 | 讨论了深度学习在声门分割中的应用及当前研究的不足 | 未提出具体的新方法或实验验证 | 探讨声门分割研究的现状及未来发展方向 | 声门分割技术 | digital pathology | NA | deep learning | NA | image | NA |
993 | 2025-05-07 |
Deep Learning for Predicting Acute Exacerbation and Mortality of Interstitial Lung Disease
2025-May, Annals of the American Thoracic Society
IF:6.8Q1
DOI:10.1513/AnnalsATS.202403-284OC
PMID:39680875
|
research paper | 开发一种深度学习模型,利用纵向数据预测间质性肺病(ILD)患者的急性加重和死亡率 | 使用深度学习模型结合纵向临床和环境数据,提高了对ILD患者急性加重和死亡率的预测准确性 | 研究数据来自两个专科中心,可能存在选择偏倚,且外部验证的样本量相对较小 | 早期识别高风险ILD患者并准确预测急性加重和死亡率,以确定治疗策略 | 间质性肺病(ILD)患者 | machine learning | lung disease | deep learning | DL | longitudinal clinical and environmental data | 1,175名ILD患者(其中218名报告了AE-ILD,380名未发展为AE-ILD即死亡) |
994 | 2025-05-07 |
Deterministic Autoencoder using Wasserstein loss for tabular data generation
2025-May, Neural networks : the official journal of the International Neural Network Society
IF:6.0Q1
DOI:10.1016/j.neunet.2025.107208
PMID:39893805
|
研究论文 | 本文提出了一种基于Wasserstein损失的确定性自编码器(TWAE),用于表格数据生成 | 利用Wasserstein自编码器的确定性编码机制,解决了变分自编码器在表格数据生成中的随机性问题,并实现了与浅层插值机制(如SMOTE)的无缝集成 | 未明确提及具体局限性 | 开发一种更稳定、表达能力更强的表格数据生成方法 | 表格数据 | 机器学习 | NA | Wasserstein自编码器,SMOTE | TWAE(基于Wasserstein的自编码器) | 表格数据 | 未明确提及具体样本量 |
995 | 2025-05-07 |
Robust graph structure learning under heterophily
2025-May, Neural networks : the official journal of the International Neural Network Society
IF:6.0Q1
DOI:10.1016/j.neunet.2025.107206
PMID:39893803
|
research paper | 提出了一种在异质性数据下进行鲁棒图结构学习的新方法,以提高下游任务如图节点分类和聚类的性能 | 该方法首次在异质性图数据中应用高通滤波器使节点特征更具区分性,并使用自适应范数学习鲁棒图结构,进一步通过新型正则化器优化图结构 | 未明确说明方法在大规模图数据上的可扩展性以及计算效率 | 解决异质性图数据中的噪声和稀疏性问题,提升图表示学习在下游任务中的性能 | 异质性图数据 | machine learning | NA | 高通滤波、自适应范数学习、图正则化 | NA | 图数据 | 未明确说明具体样本量,实验在异质性图数据上进行 |
996 | 2025-05-07 |
Attention-based deep learning models for predicting anomalous shock of wastewater treatment plants
2025-May-01, Water research
IF:11.4Q1
DOI:10.1016/j.watres.2025.123192
PMID:39893907
|
research paper | 该研究利用注意力机制辅助深度学习模型预测污水处理厂异常水质波动 | 首次将注意力机制集成到深度学习模型中,用于预测污水处理厂水质指标的异常波动,并通过局部和全局敏感性分析提高模型的可解释性 | 模型训练缺乏极端波动数据 | 提高污水处理厂对突发冲击负荷的响应能力 | 污水处理厂的水质指标(总氮、总磷和化学需氧量) | machine learning | NA | 深度学习 | A-MLP, Transformer, FTA-LSTM | 时间序列数据 | NA |
997 | 2025-05-07 |
Measurement of differential activation by heart-rate-variability for youth MDD discrimination
2025-May-01, Journal of affective disorders
IF:4.9Q1
DOI:10.1016/j.jad.2025.02.006
PMID:39914751
|
research paper | 该研究通过心率变异性(HRV)数据,结合机器学习与深度学习模型,探索了差异激活(DA)理论在青年重度抑郁症(MDD)识别中的应用 | 首次将差异激活(DA)理论与HRV记录结合,提出了一种新的青年MDD识别方法,并验证了其高效性 | 样本量较小(50名MDD患者和53名健康对照),可能影响模型的泛化能力 | 探索差异激活(DA)导向的识别器是否能有效识别青年MDD患者 | 青年重度抑郁症(MDD)患者和健康对照参与者 | machine learning | major depression disorder | HRV数据分析 | LSTM | 生理信号数据(HRV)和人口统计信息 | 103名参与者(50名MDD患者和53名健康对照) |
998 | 2025-05-07 |
Efficacy of a deep learning system for automatic analysis of the comprehensive spatial relationship between the mandibular third molar and inferior alveolar canal on panoramic radiographs
2025-May, Oral surgery, oral medicine, oral pathology and oral radiology
DOI:10.1016/j.oooo.2024.12.020
PMID:39915134
|
research paper | 开发并评估一种深度学习系统,用于预测下颌第三磨牙与下牙槽神经管在全景X光片上的接触和相对位置关系,以用于术前评估 | 首次使用深度学习系统自动分析下颌第三磨牙与下牙槽神经管的全景X光片空间关系,并展示优于经验丰富的牙医的诊断效果 | 样本量相对较小(279例全景X光片),且年龄范围有限(18-32岁) | 开发一种深度学习系统,用于术前评估下颌第三磨牙手术中与下牙槽神经管的空间关系 | 下颌第三磨牙(M3)与下牙槽神经管(IAC)的空间关系 | digital pathology | dental disease | deep learning, panoramic radiographs, cone beam computed tomography (CBCT) | ResNet50 | image | 279张全景X光片,包含441颗下颌第三磨牙 |
999 | 2025-05-07 |
Automatic future remnant segmentation in liver resection planning
2025-May, International journal of computer assisted radiology and surgery
IF:2.3Q2
DOI:10.1007/s11548-025-03331-2
PMID:39961898
|
研究论文 | 本研究提出了一种用于自动肝脏切除规划的新方法,通过CT扫描中的肝脏、血管和肿瘤分割来预测未来肝脏残余量(FLR) | 结合深度卷积和Transformer网络,利用解剖和病理分割掩码提高FLR分割的准确性 | 需要进一步研究以无缝集成到临床工作流程中 | 提高术前规划的准确性和患者预后 | 肝脏、血管和肿瘤的CT扫描图像 | 数字病理 | 肝脏疾病 | CT扫描 | 深度卷积网络和Transformer | 图像 | NA |
1000 | 2025-05-07 |
Exploring the modulation of phosphorylation and SUMOylation-dependent NPR1 conformational switching on immune regulators TGA3 and WRKY70 through molecular simulation
2025-May, Plant physiology and biochemistry : PPB
IF:6.1Q1
DOI:10.1016/j.plaphy.2025.109711
PMID:40056739
|
研究论文 | 通过分子模拟探索磷酸化和SUMO化依赖的NPR1构象转换对免疫调节因子TGA3和WRKY70的调控机制 | 利用深度学习分子建模、对接和多纳秒模拟揭示了不同磷酸化状态对NPR1动态稳定性及TGA3-WRKY70结合的影响 | 研究仅基于计算模拟,缺乏实验验证 | 阐明NPR1的翻译后修饰在植物免疫中的调控机制 | NPR1蛋白及其互作因子TGA3和WRKY70 | 计算生物学 | 植物免疫 | 深度学习分子建模、分子对接、分子动力学模拟 | 分子动力学模型 | 分子结构数据 | NA |