深度学习在生物医药领域中的应用

本数据库通过收集和整理最新科研文献信息而得,供了解领域前沿进展之用。数据源自 PubMed Data ,每日自动更新,已收录文献数量参见 统计表格。表格内容由 GPT 自动整理,可能存在错误或遗漏,请使用时务必注意核实!

如有建议或合作意向,欢迎联系 linlin.yan(AT)bioinfo.app 或 微信 yanlinlin82。本项目遵循 MIT 许可 发布,欢迎下载 源码 自行修改使用。如觉得不错,还请不吝 给我打赏,你的支持是我继续创新的重要动力!

Sample Image
添加微信请说明来意
Sample Image
微信赞赏

除通过在线浏览外,为方便用户离线查阅,本站也提供 付费下载(定价10元)。之所以考虑收费,是因为批量扫描这些文献并整理也是有一定成本的,还请理解并多多支持。本站数据会持续更新,而仅需一次付费,未来就可以随时重新下载到最新版本数据。

当前筛选条件: [分区不过滤] [IF不过滤] [发表日期不过滤] [清除筛选条件]
当前共找到 26514 篇文献,本页显示第 101 - 120 篇。
序号 推送日期 文章 类型 简述 创新点 不足 研究目的 研究对象 领域 病种 技术 模型 数据类型 样本量
101 2025-06-15
Advancing bioinformatics with large language models: components, applications and perspectives
2025-Jan-31, ArXiv
PMID:38259343
综述 本文全面概述了大型语言模型(LLMs)在生物信息学中的关键组成部分、应用及未来展望 探讨了LLMs在解决生物信息学问题上的潜力,特别是在基因组学、转录组学、蛋白质组学、药物发现和单细胞分析等领域的应用 未提及具体的实验验证或性能比较 推动生物信息学领域的发展,优化LLMs的使用并促进进一步创新 大型语言模型(LLMs)及其在生物信息学中的应用 生物信息学 NA 自监督学习、半监督学习 Transformer 文本、基因组数据、转录组数据、蛋白质组数据 NA
102 2025-06-15
Optimising deep learning models for ophthalmological disorder classification
2025-01-24, Scientific reports IF:3.8Q1
研究论文 本文利用深度学习模型对眼科疾病进行分类,采用基于迁移学习的CNN方法 使用MobileNet模型结合Adam优化器,在眼科疾病分类中取得了89.64%的测试准确率 仅使用了ODIR数据库中的数据进行实验,可能在其他数据集上表现不同 优化深度学习模型以提高眼科疾病分类的准确性 眼科疾病(如高血压、青光眼、糖尿病视网膜病变) 计算机视觉 眼科疾病 fundus imaging CNN, MobileNet image ODIR数据库中的眼底图像(患者左右眼)
103 2025-06-15
Detection of cervical cell based on multi-scale spatial information
2025-01-24, Scientific reports IF:3.8Q1
研究论文 提出了一种基于多尺度空间信息的宫颈细胞检测方法,以提高宫颈癌筛查和诊断的效率 设计了多尺度空间信息增强模块(MSA)和通道注意力增强模块(CAE),有效捕捉和整合不同尺度的空间信息,并动态优化关键特征 未提及具体的数据集规模或多样性限制,也未讨论模型在其他数据集上的泛化能力 提高宫颈癌筛查和诊断的效率和准确性 宫颈细胞 数字病理学 宫颈癌 深度学习 Sparse R-CNN 图像 NA
104 2025-06-15
Phyla: Towards a foundation model for phylogenetic inference
2025-Jan-22, bioRxiv : the preprint server for biology
研究论文 本文介绍了Phyla,一种专为系统发育推理设计的混合状态空间变换器架构,旨在通过树损失函数实现序列推理和系统发育树重建的最新性能 Phyla采用了一种新颖的混合状态空间变换器架构和树损失函数,专注于序列间的推理能力,而非传统的单个序列学习 NA 开发一个用于系统发育推理的基础模型,提升计算生物学中序列分析和系统发育推理的性能 蛋白质序列和系统发育树 计算生物学 NA 深度学习 混合状态空间变换器 蛋白质序列数据 NA
105 2025-06-15
Interpretable machine learning model for outcome prediction in patients with aneurysmatic subarachnoid hemorrhage
2025-Jan-20, Critical care (London, England)
研究论文 开发了一种可解释的深度学习模型,用于预测动脉瘤性蛛网膜下腔出血患者的功能结果 结合SHAP方法增强模型的可解释性,并通过多中心数据验证模型的稳健性 研究仅基于日本五家医院的数据,可能限制了模型的泛化能力 优化动脉瘤性蛛网膜下腔出血患者的早期康复策略 718名动脉瘤性蛛网膜下腔出血患者 机器学习 脑血管疾病 深度学习 深度学习模型 临床数据 718名患者
106 2025-06-15
Artificial intelligence: the human response to approach the complexity of big data in biology
2025-Jan-06, GigaScience IF:11.8Q1
综述 本文探讨了人工智能在生命科学中的应用,特别是在处理高通量组学数据时的作用 强调了基于组学的预测分析在系统生物学中的作用,以及创新的AI分析方法在理解复杂生物系统中的价值 未具体提及研究的局限性 探讨人工智能在生命科学中的应用及其对组学数据分析的影响 植物科学、动物科学和微生物学中的生物过程和生态系统动态 机器学习 NA 高通量组学数据分析 深度学习 组学数据 NA
107 2025-06-15
Improving lung cancer diagnosis and survival prediction with deep learning and CT imaging
2025, PloS one IF:2.9Q1
研究论文 该论文提出了一种结合深度学习和CT影像的方法,用于改善肺癌的诊断和生存预测 使用卷积神经网络建模肺癌风险与肺部形态之间的非线性关系,并提出了结合小批量损失和二元交叉熵的方法来预测肺癌发生和死亡风险 未提及具体的数据集局限性或模型泛化能力问题 提高肺癌的诊断准确性和生存预测效果 肺癌患者 计算机视觉 肺癌 CT成像 3D CNN 医学影像 国家肺癌筛查试验数据集
108 2025-06-15
An ensemble-based 3D residual network for the classification of Alzheimer's disease
2025, PloS one IF:2.9Q1
研究论文 本研究提出了一种基于深度学习的集成方法,用于阿尔茨海默病的分类 采用加权概率的集成方法整合3D残差网络的结果,并引入CBAM注意力机制增强模型性能 数据量有限,需通过数据增强技术来提升准确率 早期诊断轻度认知障碍(MCI)以延缓阿尔茨海默病(AD)的进展 阿尔茨海默病(AD)及其前驱阶段轻度认知障碍(MCI)患者 数字病理学 老年病 深度学习 3D ResNet-18, 3D ResNet-34, 3D ResNet-50 图像 NA
109 2025-06-15
In-depth exploration of software defects and self-admitted technical debt through cutting-edge deep learning techniques
2025, PloS one IF:2.9Q1
研究论文 提出了一种利用深度学习技术同时识别和分类自承认技术债务(SATD)及软件缺陷的创新方法 首次结合深度学习技术同时处理SATD和软件缺陷的识别与分类,并采用Transformer模型如GPT-3提升性能 未明确提及模型在小规模或特定领域软件项目中的泛化能力 提升软件质量评估与维护的全面性,优化技术债务与缺陷的认知及维护资源分配 软件注释中的自承认技术债务(SATD)及相关缺陷 自然语言处理 NA 深度学习架构(LSTM, BI-LSTM, GRU, BI-GRU)及Transformer模型(BERT, GPT-3) LSTM, GRU, BERT, GPT-3 文本(软件注释) 来自Apache、Mozilla Firefox和Eclipse等仓库的多样化项目数据,含SATD示例和缺陷实例
110 2025-06-15
Providing context: Extracting non-linear and dynamic temporal motifs from brain activity
2025, PloS one IF:2.9Q1
研究论文 提出一种使用非线性深度学习模型(DSVAE)从静息态功能磁共振成像(rs-fMRI)数据中提取动态时间模式的方法 使用解耦变分自编码器(DSVAE)分离窗口特定(上下文)信息和时间步特定(局部)信息,以捕捉多时间尺度的差异 NA 分析rs-fMRI动态特性,提高对精神疾病(如精神分裂症)的识别能力 精神分裂症患者和对照受试者的rs-fMRI数据 神经影像分析 精神分裂症 rs-fMRI DSVAE(解耦变分自编码器) 功能磁共振成像数据 NA
111 2025-06-15
Interpretable deep learning for gastric cancer detection: a fusion of AI architectures and explainability analysis
2025, Frontiers in immunology IF:5.7Q1
研究论文 本文提出了一种结合多种深度学习架构和可解释性分析的胃癌检测方法 融合了VGG16、RESNET50和MobileNetV2三种深度学习架构,并采用LIME技术提高模型决策的可解释性 未提及具体的数据集来源和样本多样性问题 开发高精度且可解释的胃癌检测系统以支持临床决策 胃癌的医学影像检测 数字病理学 胃癌 深度学习融合架构、LIME可解释性分析 VGG16、RESNET50、MobileNetV2融合模型 医学影像 NA
112 2025-06-15
Deep learning-based action recognition for analyzing drug-induced bone remodeling mechanisms
2025, Frontiers in pharmacology IF:4.4Q1
research paper 提出了一种基于深度学习的动作识别框架,用于分析药物诱导的骨重塑机制 结合图神经网络(GNNs)和动态信号传播模型,识别驱动骨重塑的关键分子相互作用,并集成预测药理学相互作用模型以量化药物-靶点相互作用 未提及具体实验样本量或数据来源的局限性 优化治疗干预并减少骨健康管理中的不良反应 药物诱导的骨重塑机制 machine learning geriatric disease graph neural networks (GNNs), dynamic signal propagation model GNN multi-scale biological data NA
113 2025-06-15
Graph convolutional neural networks improved target-specific scoring functions for cGAS and kRAS in virtual screening
2025, Computational and structural biotechnology journal IF:4.4Q2
研究论文 本研究通过结合分子图和卷积神经网络,提高了针对cGAS和kRAS蛋白的靶向特异性评分函数在虚拟筛选中的外推能力和准确性 首次将图卷积神经网络应用于靶向特异性评分函数的开发,显著提升了虚拟筛选的准确性和外推性能 研究仅针对cGAS和kRAS两种蛋白进行验证,需要更多靶点验证其普适性 提高虚拟筛选中靶向特异性评分函数的准确性和外推能力 cGAS和kRAS蛋白 机器学习 NA 分子对接、虚拟筛选 图卷积神经网络(GCN)、传统机器学习模型 分子图数据 NA
114 2025-06-15
Random splicing assisted deep learning for breast cancer cell line classification via Raman spectroscopy
2025, Computational and structural biotechnology journal IF:4.4Q2
研究论文 本文开发了一种名为随机拼接-卷积神经网络(RS-CNN)的深度学习框架,用于通过拉曼光谱对乳腺癌细胞系进行分类 通过随机拼接同一细胞系的拉曼光谱,RS-CNN增强了特征光谱特征,同时扩大了数据集规模并改善了信号质量 NA 开发一种深度学习框架以提高拉曼光谱在癌症识别中的准确性和效率 六种乳腺癌细胞系 数字病理学 乳腺癌 拉曼光谱 RS-CNN(随机拼接-卷积神经网络) 光谱数据 每种细胞系450个光谱,数据有限条件下为100个光谱/细胞系
115 2025-06-15
Same-model and cross-model variability in knee cartilage thickness measurements using 3D MRI systems
2025, PloS one IF:2.9Q1
研究论文 本研究通过使用五种不同制造商的MRI系统,量化并比较了同一MRI系统和不同MRI系统在膝关节软骨厚度测量中的变异性 首次量化并比较了同一MRI系统和不同MRI系统在膝关节软骨厚度测量中的变异性,揭示了跨系统变异性显著高于同一系统内变异性 研究仅使用了10名健康志愿者的样本,且仅针对特定3D体积分析软件的结果进行了评估 评估MRI系统间变异性对膝关节软骨厚度测量的影响 健康志愿者的膝关节软骨 医学影像分析 NA MRI 深度学习 3D MRI图像 10名健康志愿者(8男2女,年龄22-60岁)
116 2025-06-15
3D-MRI brain glioma intelligent segmentation based on improved 3D U-net network
2025, PloS one IF:2.9Q1
research paper 提出了一种基于改进3D U-net网络的3D-MRI脑胶质瘤智能分割方法,旨在提升胶质瘤分割的准确性和泛化能力 引入了空间金字塔池模块和多尺度融合注意力机制,结合Dice和Focal损失函数,提高了对不同尺度特征的感知能力和对挑战性样本的识别 未提及模型在不同数据集上的泛化能力测试,以及实际临床应用中的实时性能评估 提升胶质瘤分割的准确性,为医学诊断、分级和治疗策略选择提供科学依据 脑胶质瘤的3D-MRI图像 digital pathology brain glioma 3D-MRI improved 3D U-net 3D image 来自BraTS2023公共数据集的胶质瘤病例数据
117 2025-06-15
A method for feature division of Soccer Foul actions based on salience image semantics
2025, PloS one IF:2.9Q1
research paper 本研究提出了一种基于深度学习的显著图像语义的足球犯规动作特征划分方法,旨在实现足球比赛中犯规行为的自动识别与分类 结合改进的DeepPlaBV 3+架构进行显著区域检测、图卷积网络(GCN)进行特征提取和深度神经网络(DNN)进行分类,减少了对传统图像处理技术和手动特征提取的依赖 NA 提高足球比赛中犯规行为的自动识别和分类的整体识别准确率 足球比赛中的犯规动作 computer vision NA Deep Learning-Based Saliency Prediction Model (DLSPM) DeepPlaBV 3+, GCN, DNN video 多个视频运动识别数据集
118 2025-06-15
A Deep Learning Application of Capsule Endoscopic Gastric Structure Recognition Based on a Transformer Model
2024-Oct-01, Journal of clinical gastroenterology IF:2.8Q2
research paper 本研究开发了一种基于Transformer模型的深度学习应用,用于胶囊内窥镜胃部结构识别,以提高内窥镜图像识别的临床适用性 首次将Transformer模型应用于胶囊内窥镜胃部结构识别,并展示了与内窥镜医师相当的高诊断准确性 研究仅使用了单中心数据,可能影响模型的泛化能力 建立胶囊内窥镜胃部结构识别模型,提高深度学习在内窥镜图像识别中的临床应用 胶囊内窥镜视频中的15种上消化道结构 computer vision gastric lesions deep learning Transformer video 3343个无线胶囊内窥镜视频用于无监督预训练,2433个用于训练,118个用于验证
119 2025-06-15
MRGazer: decoding eye gaze points from functional magnetic resonance imaging in individual space
2024-Aug-13, Journal of neural engineering IF:3.7Q2
research paper 提出了一种名为MRGazer的框架,用于从个体空间的功能磁共振成像(fMRI)数据中预测眼球注视点 MRGazer跳过了fMRI共配准步骤,简化了处理流程,实现了端到端的眼球注视回归 NA 开发一个高效、简单且准确的深度学习框架,用于从fMRI数据预测眼球运动 眼球运动和功能磁共振成像(fMRI)数据 machine learning NA fMRI residual network fMRI数据 NA
120 2025-06-15
Discrete Representation Learning for Multivariate Time Series
2024-Aug, Proceedings of the ... European Signal Processing Conference (EUSIPCO). EUSIPCO (Conference)
research paper 本文提出了一种基于高斯过程的多元时间序列离散表示学习方法 使用Gumbel-softmax重参数化技巧解决离散潜在变量在深度学习模型中的不可微问题,实现联合聚类和嵌入 NA 开发多元时间序列的离散表示学习方法以提高可解释性 多元时间序列数据 machine learning NA Gumbel-softmax reparameterization Gaussian processes multivariate time series 合成数据和真实fMRI数据
回到顶部