本数据库通过收集和整理最新科研文献信息而得,供了解领域前沿进展之用。数据源自 PubMed Data ,每日自动更新,已收录文献数量参见 统计表格。表格内容由 GPT 自动整理,可能存在错误或遗漏,请使用时务必注意核实!
如有建议或合作意向,欢迎联系 linlin.yan(AT)bioinfo.app 或 微信 yanlinlin82。本项目遵循 MIT 许可 发布,欢迎下载 源码 自行修改使用。如觉得不错,还请不吝 给我打赏,你的支持是我继续创新的重要动力!
除通过在线浏览外,为方便用户离线查阅,本站也提供 付费下载(定价10元)。之所以考虑收费,是因为批量扫描这些文献并整理也是有一定成本的,还请理解并多多支持。本站数据会持续更新,而仅需一次付费,未来就可以随时重新下载到最新版本数据。
序号 | 推送日期 | 文章 | 类型 | 简述 | 创新点 | 不足 | 研究目的 | 研究对象 | 领域 | 病种 | 技术 | 模型 | 数据类型 | 样本量 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
14281 | 2024-10-10 |
Artificial Intelligence Detection of Cervical Spine Fractures Using Convolutional Neural Network Models
2024-Sep, Neurospine
IF:3.8Q1
DOI:10.14245/ns.2448580.290
PMID:39363462
|
研究论文 | 开发并评估了一种使用卷积神经网络(CNN)进行计算机辅助诊断颈椎骨折的技术 | 利用深度学习技术,可能改善患者预后和临床决策 | NA | 开发和评估用于计算机辅助诊断颈椎骨折的卷积神经网络技术 | 颈椎骨折的放射线X光图像 | 计算机视觉 | 颈椎骨折 | 卷积神经网络(CNN) | CNN | 图像 | 500张颈椎侧位X光图像,包括250张正常图像和250张骨折图像 |
14282 | 2024-10-10 |
Development and validation of a machine learning-based model for post-sepsis frailty
2024-Sep, ERJ open research
IF:4.3Q1
DOI:10.1183/23120541.00166-2024
PMID:39377092
|
研究论文 | 开发并验证了一种基于机器学习的模型,用于预测脓毒症后的虚弱状况 | 使用深度学习模型预测脓毒症后的虚弱状况,并通过外部验证确认了其泛化性能 | 研究仅限于韩国的多中心前瞻性观察性队列,可能限制了结果的普遍性 | 开发和验证一种能够预测脓毒症后虚弱的机器学习模型 | 脓毒症患者及其出院时的虚弱状况 | 机器学习 | NA | 深度学习 | 极端梯度提升 (XGB) | 临床数据 | 8518名患者,其中5463名(64.1%)在出院时虚弱,3055名(35.9%)不虚弱 |
14283 | 2024-10-10 |
Model fusion for predicting unconventional proteins secreted by exosomes using deep learning
2024-Sep, Proteomics
IF:3.4Q2
DOI:10.1002/pmic.202300184
PMID:38643383
|
研究论文 | 本文提出了一种利用深度学习模型融合预测由外泌体分泌的非常规蛋白质的新方法 | 通过结合多个深度学习模型,包括卷积神经网络(CNN)和密集连接神经网络(DNN),本文提出的框架在预测非常规蛋白质分泌方面超越了以往的方法 | NA | 开发一种更准确的计算方法来预测由外泌体分泌的非常规蛋白质 | 非常规分泌蛋白质(USPs)及其通过外泌体和外体分泌的机制 | 机器学习 | NA | 深度学习 | 卷积神经网络(CNN)和密集连接神经网络(DNN) | 蛋白质序列和进化信息 | 独立测试数据集 |
14284 | 2024-10-10 |
Evaluation of image quality on low contrast media with deep learning image reconstruction algorithm in prospective ECG-triggering coronary CT angiography
2024-Jun, The international journal of cardiovascular imaging
DOI:10.1007/s10554-024-03113-y
PMID:38722507
|
研究论文 | 评估低对比剂剂量下使用深度学习图像重建算法对冠状动脉CT血管造影图像质量的影响 | 使用深度学习图像重建算法(DLIR)在低对比剂剂量下实现高质量的冠状动脉CT血管造影图像 | 研究仅限于特定的对比剂浓度和流速,未探讨其他可能影响图像质量的因素 | 评估低剂量对比剂注射协议与深度学习图像重建算法对冠状动脉CT血管造影图像质量的影响 | 冠状动脉CT血管造影图像质量 | 计算机视觉 | 心血管疾病 | 深度学习图像重建算法 | 深度学习模型 | 图像 | 210名患者,分为三组,每组70人 |
14285 | 2024-10-10 |
Exploring the potential of machine learning in gynecological care: a review
2024-06, Archives of gynecology and obstetrics
IF:2.1Q2
DOI:10.1007/s00404-024-07479-1
PMID:38625543
|
综述 | 本文综述了机器学习在妇科护理中的潜力及其在孕早期、中期和晚期与超声技术的结合应用 | 探讨了机器学习在妇科健康中的应用,包括自然语言处理(NLP)和ChatGPT的概念 | 讨论了在妇科领域应用机器学习时面临的挑战 | 综述机器学习在妇科护理中的应用及其潜力 | 孕早期、中期和晚期,以及不孕症治疗、乳腺癌和宫颈癌 | 机器学习 | 妇科疾病 | 机器学习(ML)和深度学习(DL) | NA | 数据集 | NA |
14286 | 2024-10-10 |
An enhanced Garter Snake Optimization-assisted deep learning model for lung cancer segmentation and classification using CT images
2024-May, Journal of medical engineering & technology
DOI:10.1080/03091902.2024.2399015
PMID:39282826
|
研究论文 | 本文提出了一种基于改进的Garter Snake优化算法和深度学习的肺部CT图像分割与分类模型 | 使用改进的Garter Snake优化算法优化自适应残差注意力网络参数,并结合Shuffling Atrous卷积的ResUnet++进行图像分割 | 需要高质量的CT扫描图像和相关分析工具,成本较高且在资源有限的环境中不易获取 | 设计一种基于启发式和深度学习的肺部CT图像分类方法,以提高早期肺癌检测的准确性 | 肺部CT图像的分割与分类 | 计算机视觉 | 肺癌 | CT扫描 | 自适应残差注意力网络(ARAN) | 图像 | 未明确提及具体样本数量 |
14287 | 2024-10-10 |
A 3 M Evaluation Protocol for Examining Lymph Nodes in Cancer Patients: Multi-Modal, Multi-Omics, Multi-Stage Approach
2024 Jan-Dec, Technology in cancer research & treatment
IF:2.7Q3
DOI:10.1177/15330338241277389
PMID:39267420
|
综述 | 本文总结了大量基于统计数据和临床经验的文章,提出了一种标准化的淋巴结评估协议 | 提出了多模态、多组学、多阶段的综合评估方法,并构建了深度学习模型辅助图像分析 | 未详细讨论免疫功能受损的具体机制和解决方案 | 提出一种标准化的淋巴结评估协议,以优化癌症患者的治疗方案和预后预测 | 癌症患者的淋巴结评估 | 数字病理学 | NA | 深度学习 | 深度学习模型 | 图像 | NA |
14288 | 2024-10-02 |
Towards deep learning methods for quantification of the right ventricle using 2D echocardiography
2024, Future cardiology
IF:1.6Q3
DOI:10.1080/14796678.2024.2347125
PMID:39351980
|
NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
14289 | 2024-10-10 |
Image restoration in frequency space using complex-valued CNNs
2024, Frontiers in artificial intelligence
IF:3.0Q2
DOI:10.3389/frai.2024.1353873
PMID:39376505
|
研究论文 | 本文探讨了在频率空间中使用复值卷积神经网络(CV-CNN)进行图像恢复的潜力 | 提出了基于复值卷积神经网络(CV-CNN)的新模型,配备了复值注意力门,用于频率域中的图像去噪和超分辨率任务 | 空间域中的实值卷积神经网络(RV-CNN)在处理完整频率谱时存在局限性,导致纹理和结构元素的缺失 | 解决空间域中实值卷积神经网络在图像恢复任务中的局限性,探索复值卷积神经网络在频率域中的应用 | 图像去噪和超分辨率任务 | 计算机视觉 | NA | 复值卷积神经网络(CV-CNN) | 复值卷积神经网络(CV-CNN) | 图像 | 涉及超分辨率结构光照显微镜(SR-SIM)和常规图像数据集 |
14290 | 2024-10-10 |
Pilot turning behavior cognitive load analysis in simulated flight
2024, Frontiers in neuroscience
IF:3.2Q2
DOI:10.3389/fnins.2024.1450416
PMID:39376543
|
研究论文 | 本文通过模拟飞行实验,分析了不同转向任务中的认知负荷,并开发了一种基于机器学习和深度学习算法的认知负荷识别模型 | 本文首次将LSTM-Attention模型应用于飞行员转向任务的认知负荷识别,并取得了较高的F1分数 | 实验仅基于模拟飞行环境,未考虑实际飞行中的复杂情况 | 识别模拟飞行中不同转向任务的认知负荷 | 飞行员在模拟飞行中的转向行为 | 机器学习 | NA | 心率变异性(HRV)分析 | LSTM-Attention | 心率数据和飞行数据 | 未明确提及具体样本数量 |
14291 | 2024-10-10 |
Integrating tabular data through image conversion for enhanced diagnosis: A novel intelligent decision support system for stratifying obstructive sleep apnoea patients using convolutional neural networks
2024 Jan-Dec, Digital health
IF:2.9Q2
DOI:10.1177/20552076241272632
PMID:39376943
|
研究论文 | 本文介绍了一种基于深度学习技术的智能决策支持系统,通过将表格数据转换为图像来诊断阻塞性睡眠呼吸暂停的严重程度 | 创新点在于将患者数据形式化为图像,并使用卷积神经网络进行训练和推理 | NA | 开发一种新的数据形式化方法,以利用深度学习技术从表格数据中进行诊断 | 阻塞性睡眠呼吸暂停患者的严重程度 | 计算机视觉 | NA | 深度学习 | 卷积神经网络 | 图像 | 2472名患者的数据,其中247个样本用于初步测试 |
14292 | 2024-10-09 |
Multi-modal remote perception learning for object sensory data
2024, Frontiers in neurorobotics
IF:2.6Q3
DOI:10.3389/fnbot.2024.1427786
PMID:39377028
|
研究论文 | 本文介绍了一种名为深度融合网络(DFN)的新方法,通过结合多目标检测和语义分析来提高上下文场景理解能力 | 提出了深度融合网络(DFN),通过结合深度学习和融合技术来提高复杂场景中的准确性和理解能力 | NA | 提高智能系统在复杂场景中的上下文理解和对象检测能力 | 多模态远程感知数据 | 计算机视觉 | NA | 深度学习 | 深度融合网络(DFN) | 图像 | SUN-RGB-D数据集和NYU-Dv2数据集 |
14293 | 2024-10-10 |
Quality assessment of traditional Chinese medicine based on data fusion combined with machine learning: A review
2024, Critical reviews in analytical chemistry
IF:4.2Q1
DOI:10.1080/10408347.2023.2189477
PMID:36966435
|
综述 | 本文综述了基于数据融合和机器学习的中药质量评估方法 | 本文介绍了多源信息融合技术和机器学习在中药质量评估中的应用,提高了评估的准确性和全面性 | 本文主要综述了现有方法,未提出新的具体技术或模型 | 探讨数据融合和机器学习在中药质量评估中的应用 | 中药的质量评估 | 机器学习 | NA | 数据融合 | 深度学习 | 化学成分数据 | NA |
14294 | 2024-10-10 |
Development of Deep Ensembles to Screen for Autism and Symptom Severity Using Retinal Photographs
2023-12-01, JAMA network open
IF:10.5Q1
|
研究论文 | 开发深度集成模型以使用视网膜照片筛查自闭症和症状严重程度 | 首次探索使用深度学习算法通过视网膜照片进行自闭症谱系障碍(ASD)及其症状严重程度的客观筛查 | 研究在单一医院进行,样本主要为男孩,可能影响结果的普适性 | 开发深度集成模型以区分ASD患者与典型发育(TD)个体的视网膜照片,并区分严重ASD与轻中度ASD | 自闭症谱系障碍(ASD)患者和典型发育(TD)个体的视网膜照片 | 计算机视觉 | 自闭症 | 深度学习算法 | 深度集成模型 | 图像 | 1890只眼睛,958名参与者 |
14295 | 2024-10-10 |
Pay attention to doctor-patient dialogues: Multi-modal knowledge graph attention image-text embedding for COVID-19 diagnosis
2021-Nov, An international journal on information fusion
DOI:10.1016/j.inffus.2021.05.015
PMID:34093095
|
研究论文 | 本文提出了一种多模态知识图谱注意力嵌入方法,用于COVID-19诊断,结合了医生-患者对话和医学图像信息 | 本文的创新点在于结合了多模态数据(文本和图像),并通过知识图谱注意力机制引入医学知识,以提高分类器的性能 | NA | 旨在解决当前深度学习方法在多模态数据充分性方面的问题,并提高COVID-19诊断的准确性和早期评估 | COVID-19患者的医生-患者对话和医学图像 | 自然语言处理 | COVID-19 | 知识图谱注意力机制 | NA | 文本和图像 | 1393个COVID-19患者对话和3706张图像,607个非COVID-19患者对话和10754张图像 |
14296 | 2024-10-10 |
AIDeveloper: Deep Learning Image Classification in Life Science and Beyond
2021-06, Advanced science (Weinheim, Baden-Wurttemberg, Germany)
DOI:10.1002/advs.202003743
PMID:34105281
|
研究论文 | 介绍了一种名为AIDeveloper的开源软件,用于在不需要编程的情况下训练神经网络进行图像分类 | AIDeveloper提供了一种易于使用、可适应且开源的解决方案,无需编程即可训练神经网络进行图像分类 | NA | 开发一种无需编程即可训练神经网络进行图像分类的软件 | 图像分类在生命科学及其他领域的应用 | 计算机视觉 | NA | 神经网络 | 神经网络 | 图像 | 超过120万张图像用于训练神经网络进行血细胞分类 |
14297 | 2024-10-10 |
Image-driven classification of functioning and nonfunctioning pituitary adenoma by deep convolutional neural networks
2021, Computational and structural biotechnology journal
IF:4.4Q2
DOI:10.1016/j.csbj.2021.05.023
PMID:34136106
|
研究论文 | 本文利用深度卷积神经网络对功能性和非功能性垂体腺瘤进行图像驱动的分类 | 首次提出基于深度学习的垂体腺瘤区域分割和分类模型,采用迁移学习和注意力机制提高模型性能 | NA | 开发一种自动化的方法来区分功能性和非功能性垂体腺瘤,以辅助治疗策略的制定 | 垂体腺瘤的功能性分类 | 计算机视觉 | NA | 卷积神经网络 | CNN | 图像 | 185名垂体腺瘤患者(来自两个中心)的3D MRI图像 |
14298 | 2024-10-10 |
Overview of current state of research on the application of artificial intelligence techniques for COVID-19
2021, PeerJ. Computer science
DOI:10.7717/peerj-cs.564
PMID:34141890
|
综述 | 本文综述了当前人工智能技术在COVID-19应用研究中的现状 | 本文通过综述AI技术在COVID-19预测、诊断、药物设计和分析社会影响方面的应用,为未来研究提供了建议 | NA | 探讨人工智能技术在COVID-19疫情中的应用 | COVID-19的预测、诊断、药物设计和社会影响分析 | 机器学习 | COVID-19 | 机器学习和深度学习 | NA | NA | NA |
14299 | 2024-10-10 |
Generalizable, Reproducible, and Neuroscientifically Interpretable Imaging Biomarkers for Alzheimer's Disease
2020-Jul, Advanced science (Weinheim, Baden-Wurttemberg, Germany)
DOI:10.1002/advs.202000675
PMID:32714766
|
研究论文 | 本文提出了一种深度学习模型3DAN,用于阿尔茨海默病的诊断,并通过多中心和公共数据库验证其泛化性和可重复性 | 本文创新性地提出了3DAN模型,结合注意力机制模块,能够同时捕捉候选影像生物标志物并提高阿尔茨海默病的诊断准确性 | NA | 开发个性化、可重复且神经科学上可解释的生物标志物,以支持阿尔茨海默病的精准医学 | 阿尔茨海默病及其轻度认知障碍阶段 | 机器学习 | 阿尔茨海默病 | 深度学习 | 3D注意力网络(3DAN) | 影像 | 716个内部多中心样本和1116个公共数据库样本 |
14300 | 2024-10-10 |
Deep learning applications in pulmonary medical imaging: recent updates and insights on COVID-19
2020, Machine vision and applications
IF:2.4Q2
DOI:10.1007/s00138-020-01101-5
PMID:32834523
|
综述 | 本文综述了深度学习在肺部医学影像分析中的应用发展,特别关注了COVID-19的贡献 | 本文总结了深度学习在肺部影像分析中的最新进展,并特别强调了其在COVID-19中的应用 | 本文主要集中在2017年2月至2020年5月期间的研究,可能未涵盖最新的研究成果 | 探讨深度学习在肺部医学影像分析中的应用及其对COVID-19的贡献 | 肺部影像分析中的深度学习应用,包括分类、分割和检测等任务,以及不同肺部病理如气道疾病、肺癌、COVID-19和其他感染 | 计算机视觉 | 肺部疾病 | 深度学习 | NA | 影像 | 超过160项贡献和调查 |