深度学习在生物医药领域的应用

本数据库通过收集和整理最新科研文献信息而得,供了解领域前沿进展之用。数据源自 PubMed Data ,每日自动更新(使用关键词“['deep learning']”过滤),已收录文献数量参见 统计表格。表格内容由 GPT 自动整理,可能存在错误或遗漏,请使用时务必注意核实!

如有建议或合作意向,欢迎联系 linlin.yan(AT)bioinfo.app 或 微信 yanlinlin82。本项目遵循 MIT 许可 发布,欢迎下载 源码 自行修改使用。如觉得不错,还请不吝 给我打赏,你的支持是我继续创新的重要动力!

Sample Image
添加微信请说明来意
Sample Image
微信赞赏

除通过在线浏览外,为方便用户离线查阅,本站也提供 付费下载(定价19.9元)。之所以考虑收费,是因为批量扫描这些文献并整理也是有一定成本的,还请理解并多多支持。本站数据会持续更新,而仅需一次付费,未来就可以随时重新下载到最新版本数据。

当前筛选条件: [分区不过滤] [IF不过滤] [发表日期不过滤] [清除筛选条件]
当前共找到 34204 篇文献,本页显示第 14341 - 14360 篇。
序号 推送日期 文章 类型 简述 创新点 不足 研究目的 研究对象 领域 病种 技术 模型 数据类型 样本量 算法框架 模型架构 性能指标 计算资源
14341 2025-05-02
Cross-Shaped Heat Tensor Network for Morphometric Analysis Using Zebrafish Larvae Feature Keypoints
2024-Dec-28, Sensors (Basel, Switzerland)
research paper 提出了一种基于深度学习的特征端点检测方法,用于定量确定斑马鱼幼体的表型和器官特征 引入了交叉形热张量网络(CSHT-Net),通过新颖的关键点训练方法和组合卷积块特征提取器,解决了基于热图方法仅关注关键点局部区域的问题,并增强了模型学习连续带状特征的能力 NA 开发一种非破坏性的斑马鱼幼体形态计量分析方法,用于识别异常和诊断疾病 斑马鱼幼体 computer vision NA deep learning CSHT-Net image 4389张斑马鱼幼体的明场显微照片 NA NA NA NA
14342 2025-05-02
Comparative Analysis of Edge Detection Operators Using a Threshold Estimation Approach on Medical Noisy Images with Different Complexities
2024-Dec-27, Sensors (Basel, Switzerland)
研究论文 本文通过提出的阈值估计方法,比较分析了噪声对不同复杂度医学图像边缘检测的影响 提出了一种创新的边缘检测方法,考虑了不同噪声类型和浓度,并在多种复杂度的医学图像上进行了评估 研究仅针对特定类型的医学图像(视网膜图像、脑肿瘤分割和肺部CT扫描),可能不适用于其他类型的医学图像 评估噪声对医学图像边缘检测的影响,并提出一种有效的阈值估计方法 医学图像(视网膜图像、脑肿瘤分割和肺部CT扫描) 计算机视觉 脑肿瘤、肺部疾病 网格搜索(GS)方法和随机搜索(RS9) Canny算子、Laplace算子、AlexNet、ResNet、VGGNet、MobileNetv2、Inceptionv3 图像 三个不同的数据集(视网膜图像、脑肿瘤分割和肺部CT扫描) NA NA NA NA
14343 2025-05-02
Deep Learning Unravels Differences Between Kinematic and Kinetic Gait Cycle Time Series from Two Control Samples of Healthy Children Assessed in Two Different Gait Laboratories
2024-Dec-27, Sensors (Basel, Switzerland)
research paper 研究利用深度学习比较两个不同步态实验室评估的健康儿童步态周期时间序列的差异 使用基于ResNet的深度学习模型成功识别数据来源实验室,并探索减少实验室间差异的预处理方法 研究仅涉及两个实验室的数据,可能无法完全代表所有实验室的差异 比较不同实验室评估的健康儿童步态周期时间序列差异,并提高机器学习模型在临床环境中的可转移性 两组健康儿童的步态周期时间序列数据 machine learning NA 步态分析协议 ResNet 时间序列数据 两组健康儿童的步态数据 NA NA NA NA
14344 2025-05-02
Real-Time PPG-Based Biometric Identification: Advancing Security with 2D Gram Matrices and Deep Learning Models
2024-Dec-25, Sensors (Basel, Switzerland)
research paper 本研究探讨了基于光电容积描记(PPG)信号的生物识别技术,通过二维Gram矩阵转换和深度学习模型提高安全性 采用PPG信号结合Gram矩阵转换和EfficientNetV2 B0与LSTM网络,实现了99%的准确率,并在实时识别场景中验证了其有效性 样本量较小,仅包含40名受试者 提升生物识别系统的安全性和抗欺骗能力 PPG信号 machine learning NA PPG信号采集 EfficientNetV2 B0与LSTM网络 PPG信号 40名受试者 NA NA NA NA
14345 2025-05-02
Deep Learning-Based Computer-Aided Diagnosis of Osteochondritis Dissecans of the Humeral Capitellum Using Ultrasound Images
2024-Dec-04, The Journal of bone and joint surgery. American volume
research paper 开发了一种基于深度学习的计算机辅助诊断系统,用于通过超声图像检测肱骨小头剥脱性骨软骨炎 首次将深度学习应用于肱骨小头剥脱性骨软骨炎的超声图像诊断,并实现了高准确率 研究样本量相对较小,且仅针对棒球运动员群体 开发并评估基于深度学习的计算机辅助诊断系统,用于肱骨小头剥脱性骨软骨炎的检测 196名棒球运动员的肘部超声图像(其中92名患有剥脱性骨软骨炎) digital pathology osteochondritis dissecans ultrasound imaging object-detection algorithm and image classification network image 196名棒球运动员的肘部超声图像(训练和验证集),外加20名运动员的外部数据集(测试集) NA NA NA NA
14346 2025-05-02
HiCervix: An Extensive Hierarchical Dataset and Benchmark for Cervical Cytology Classification
2024-Dec, IEEE transactions on medical imaging IF:8.9Q1
research paper 介绍了一个名为HiCervix的广泛多层次宫颈细胞学数据集和基准测试方法HierSwin,用于宫颈细胞学分类 提出了目前最广泛的多中心宫颈细胞学数据集HiCervix,以及基于层次视觉变换器的分类网络HierSwin,利用层次树中的语义相关性进行详细特征学习 NA 提高宫颈细胞学分类的准确性和详细性,以更好地反映真实世界的细胞病理学条件 宫颈细胞 digital pathology cervical cancer deep learning HierSwin (hierarchical vision transformer) image 40,229 cervical cells from 4,496 whole slide images NA NA NA NA
14347 2025-10-07
DGSLSTM: Deep Gated Stacked Long Short-Term Memory Neural Network for Traffic Flow Forecasting of Transportation Networks on Big Data Environment
2024-12, Big data IF:2.6Q2
研究论文 提出一种深度门控堆叠LSTM神经网络用于大数据环境下的交通流量预测 结合多个简单循环LSTM神经网络与时间特征,采用无监督逐层训练方法构建深度门控堆叠神经网络 未明确说明模型的具体局限性 提高交通流量预测的准确性 交通网络的流量数据 机器学习 NA 深度学习 LSTM, GRU, 堆叠自编码器 时间序列数据 NA NA 深度门控堆叠LSTM, 门控循环单元, 堆叠自编码器 预测效能 大数据环境
14348 2025-10-07
Social Listening for Product Design Requirement Analysis and Segmentation: A Graph Analysis Approach with User Comments Mining
2024-12, Big data IF:2.6Q2
研究论文 通过社交媒体在线评论分析客户产品设计需求,并快速转化为产品设计规范 提出指数判别雪球抽样方法构建产品相关子网络,结合图采样聚合和深度学习框架进行用户画像定义和意见挖掘 仅基于百度贴吧单一数据源,未验证在其他社交媒体平台的适用性 通过社交媒体用户评论分析产品设计需求和市场细分 智能手机设计分析,基于百度贴吧的用户评论数据 自然语言处理 NA 自然语言处理,图分析,意见挖掘 BiLSTM, CRF, 图神经网络 文本评论数据 14,018个用户,30,803条评论,11层社交关系 NA 双向长短期记忆网络,条件随机场,GraphSAGE 用户群体聚类合理性 NA
14349 2025-05-02
Deep learning in integrating spatial transcriptomics with other modalities
2024-Nov-22, Briefings in bioinformatics IF:6.8Q1
综述 本文系统回顾了深度学习在整合空间转录组学与其他模态数据中的应用 首次全面综述了深度学习在整合空间转录组学与其他模态数据中的方法与应用 未涉及具体实验验证,主要基于文献综述 促进开发更强大的计算方法以更全面地利用多模态信息 空间转录组学数据与其他模态数据的整合方法 生物信息学 NA 空间转录组学、单细胞RNA测序(scRNA-seq)、深度学习 深度学习(DL) 空间转录组学数据、组织学图像、染色质图像、scRNA-seq数据 NA NA NA NA NA
14350 2025-05-02
DD-PRiSM: a deep learning framework for decomposition and prediction of synergistic drug combinations
2024-Nov-22, Briefings in bioinformatics IF:6.8Q1
research paper 介绍了一种名为DD-PRiSM的深度学习框架,用于分解和预测协同药物组合的效果 DD-PRiSM能够分解组合疗法的效果,成功识别协同药物对,并展示了协同反应在不同癌症类型中的差异 未明确提及具体限制 预测组合疗法的效果和安全性,特别是针对癌症等复杂疾病 药物组合及其在细胞系中的效果 machine learning cancer deep learning DD-PRiSM (包含Monotherapy模型和Combination therapy模型) 药物结构、细胞系基因表达数据 未明确提及具体样本数量 NA NA NA NA
14351 2024-12-05
Letter to the Editor Regarding "A Practical Roadmap to Implementing Deep Learning Segmentation in the Clinical Neuroimaging Research Workflow"
2024-Nov, World neurosurgery IF:1.9Q2
NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
14352 2025-05-02
Assessment of Pelvic Tilt in Anteroposterior Radiographs by Area Ratio Based on Deep Learning
2024-Oct-15, Spine IF:2.6Q1
research paper 利用基于深度学习的语义分割模型,通过前后位X光片中骨盆小骨盆与闭孔的面积比评估骨盆倾斜 首次将深度学习语义分割模型应用于骨盆倾斜的自动测量,通过面积比方法提高了测量的准确性和鲁棒性 研究样本量相对较小(20个模拟骨盆和231个临床案例),可能影响结果的普遍性 开发一种自动测量骨盆倾斜的方法,以辅助髋关节和脊柱手术 骨盆X光片(模拟和临床案例) digital pathology geriatric disease deep learning semantic segmentation CNN image 20个模拟骨盆(10男10女)和231个临床案例 NA NA NA NA
14353 2025-05-02
A Practical Roadmap to Implementing Deep Learning Segmentation in the Clinical Neuroimaging Research Workflow
2024-09, World neurosurgery IF:1.9Q2
research paper 本文探讨了一种利用开源工具加速和增强临床研究中图像分割的通用方法 提出了一种迭代的模型训练和迁移学习方法,强调在标记过程的早期进行内部验证和异常值处理,后期进行微调 NA 为使用机器学习技术进行图像分割的研究提供加速和增强可重复性的框架 临床神经影像研究中的图像分割 machine learning NA deep learning NA image NA NA NA NA NA
14354 2025-05-02
Predicting the Outcome and Survival of Patients with Spinal Cord Injury Using Machine Learning Algorithms: A Systematic Review
2024-08, World neurosurgery IF:1.9Q2
系统综述 本文通过系统综述评估了机器学习算法在脊髓损伤(SCI)患者诊断和预后预测中的表现 总结了机器学习在SCI领域的应用潜力,特别是在诊断和预后预测方面的效果 需要进一步研究深度学习算法在急性SCI诊断中的应用 评估机器学习算法在脊髓损伤患者诊断和预后预测中的性能 脊髓损伤患者 机器学习 脊髓损伤 机器学习算法 ML和DL算法 临床数据 9424名被诊断为脊髓损伤的患者 NA NA NA NA
14355 2025-05-02
Usefulness of Artificial Intelligence in Traumatic Brain Injury: A Bibliometric Analysis and Mini-review
2024-08, World neurosurgery IF:1.9Q2
综述 本文通过文献计量分析和迷你综述,探讨了人工智能在创伤性脑损伤(TBI)中的主要应用 结合文献计量分析和迷你综述,全面评估了人工智能在TBI领域的研究进展和应用潜力 主要基于Scopus数据库的文献,可能未涵盖所有相关研究 评估人工智能在创伤性脑损伤领域的应用和研究趋势 创伤性脑损伤(TBI)相关的科学出版物 人工智能 创伤性脑损伤 文献计量分析、知识图谱分析 NA 文献数据 495篇科学出版物(2000-2023年) NA NA NA NA
14356 2025-10-07
Semiautomatic Assessment of Facet Tropism From Lumbar Spine MRI Using Deep Learning: A Northern Finland Birth Cohort Study
2024-May-01, Spine IF:2.6Q1
研究论文 本研究开发了一种基于深度学习的半自动框架,用于从腰椎MRI测量小关节角度并研究小关节取向异常 首次在大型芬兰出生队列中应用深度学习自动测量小关节角度并分析小关节取向异常 研究为回顾性横断面设计,模型仅在430名参与者的MRI图像上训练 开发半自动测量小关节角度的深度学习框架并研究人群中小关节取向异常的患病率 NFBC1966芬兰出生队列中的1288名参与者的腰椎MRI图像 数字病理 脊柱疾病 T2加权轴向磁共振成像 深度学习模型 医学影像 训练集430人,总队列1288人,评估集60人 NA NA Dice分数, 交并比 NA
14357 2025-10-07
A New Deep Learning Algorithm for Detecting Spinal Metastases on Computed Tomography Images
2024-Mar-15, Spine IF:2.6Q1
研究论文 开发了一种基于深度学习的新型计算机辅助检测模型,用于自动检测胸腰椎区域的溶骨性骨转移病灶 提出了一种新的深度学习算法,专门针对常规CT扫描中的胸腰椎溶骨性骨转移病灶检测 准确性仍需进一步提高 自动检测胸腰椎区域的溶骨性骨转移病灶,改善癌症患者生活质量 胸腰椎区域的溶骨性骨转移病灶 计算机视觉 骨转移癌 计算机断层扫描(CT) 深度学习 CT图像 263份阳性CT扫描(含骨转移病灶)和172份阴性CT扫描(无骨转移),测试集包含20份阳性和20份阴性CT扫描 NA NA 敏感度, 精确率, F1分数, 特异性 NA
14358 2025-05-02
Inflamed immune phenotype predicts favorable clinical outcomes of immune checkpoint inhibitor therapy across multiple cancer types
2024-02-14, Journal for immunotherapy of cancer IF:10.3Q1
研究论文 本研究探讨了基于AI的免疫表型在预测多种实体瘤类型中免疫检查点抑制剂治疗临床结果的能力 利用深度学习模型Lunit SCOPE IO客观且可重复地定义炎症免疫表型(IIP),并验证其作为跨多种肿瘤类型的免疫检查点抑制剂治疗反应的生物标志物 微卫星不稳定/错配修复缺陷亚组的IIP未能预测有利的无进展生存期 评估AI定义的IIP与免疫检查点抑制剂治疗临床结果之间的相关性 1,806名接受免疫检查点抑制剂治疗的患者,涵盖超过27种实体瘤类型 数字病理学 多种癌症 深度学习 Lunit SCOPE IO 图像 1,806名患者 NA NA NA NA
14359 2025-05-02
Advanced computational tools, artificial intelligence and machine-learning approaches in gut microbiota and biomarker identification
2024, Frontiers in medical technology IF:2.7Q3
综述 本文综述了先进计算工具、人工智能和机器学习方法在肠道微生物群和生物标志物识别中的应用 整合多组学数据和先进AI技术,探索微生物组与宿主健康的复杂关系,推动个性化治疗策略的发展 未提及具体技术实施细节或临床验证结果 探索计算工具和AI在肠道微生物组研究中的应用,以识别疾病诊断和治疗的生物标志物 肠道微生物群及其与宿主健康的相互作用 机器学习 NA 多组学数据整合(宏基因组学、宏蛋白质组学、代谢组学) 深度学习、基于网络的方法 多组学数据 NA NA NA NA NA
14360 2025-10-07
Deep learning-based phenotyping reclassifies combined hepatocellular-cholangiocarcinoma
2023-12-14, Nature communications IF:14.7Q1
研究论文 本研究利用深度学习对组合性肝细胞-胆管癌进行表型重分类 首次使用深度学习模型对cHCC-CCA肿瘤进行重新分类,并将预测结果与临床结局、基因改变和空间基因表达谱相关联 研究针对罕见双表型癌症,样本量相对有限 改善组合性肝细胞-胆管癌的诊断分类和治疗决策 405例cHCC-CCA患者及其肿瘤样本 数字病理学 肝癌 深度学习,原位空间基因表达分析 深度学习模型 病理图像,基因表达数据 405例cHCC-CCA患者 NA NA 诊断准确性 NA
回到顶部