本数据库通过收集和整理最新科研文献信息而得,供了解领域前沿进展之用。数据源自 PubMed Data ,每日自动更新(使用关键词“['deep learning']”过滤),已收录文献数量参见 统计表格。表格内容由 GPT 自动整理,可能存在错误或遗漏,请使用时务必注意核实!
如有建议或合作意向,欢迎联系 linlin.yan(AT)bioinfo.app 或 微信 yanlinlin82。本项目遵循 MIT 许可 发布,欢迎下载 源码 自行修改使用。如觉得不错,还请不吝 给我打赏,你的支持是我继续创新的重要动力!


除通过在线浏览外,为方便用户离线查阅,本站也提供 付费下载(定价19.9元)。之所以考虑收费,是因为批量扫描这些文献并整理也是有一定成本的,还请理解并多多支持。本站数据会持续更新,而仅需一次付费,未来就可以随时重新下载到最新版本数据。
| 序号 | 推送日期 | 文章 | 类型 | 简述 | 创新点 | 不足 | 研究目的 | 研究对象 | 领域 | 病种 | 技术 | 模型 | 数据类型 | 样本量 | 算法框架 | 模型架构 | 性能指标 | 计算资源 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 1501 | 2026-01-24 |
Role of MRI radiomics in deep learning-based prediction of intestinal diseases
2026-Jan-20, International journal of colorectal disease
IF:2.5Q1
DOI:10.1007/s00384-026-05083-0
PMID:41559237
|
综述 | 本文综述了基于MRI影像组学和深度学习在肠道疾病预后评估中的应用,重点关注炎症性肠病和结直肠癌 | 系统性地整合了MRI影像组学与深度学习在肠道疾病预后预测中的最新证据,并强调了多模态融合方法的应用潜力 | 大多数研究为回顾性设计,缺乏外部验证,且模型的可解释性和泛化性存在挑战 | 评估MRI影像组学和深度学习在肠道疾病预后评估中的效果与潜力 | 炎症性肠病和结直肠癌患者 | 数字病理学 | 结直肠癌 | MRI | CNN, Vision Transformer | 图像 | NA | NA | 卷积神经网络, 视觉Transformer | NA | NA |
| 1502 | 2026-01-24 |
Neural-linguistic analysis for Alzheimer's detection: A deep learning approach informed by cognitive neuroscience
2026-Jan-20, NeuroImage
IF:4.7Q1
DOI:10.1016/j.neuroimage.2026.121739
PMID:41570955
|
研究论文 | 本文提出了一种名为COASTAL的神经生物学启发的深度学习框架,用于通过语音分析检测阿尔茨海默病 | 提出认知声学符号转换框架,模拟大脑层级语音处理通路,将声学模式转换为离散符号元素,并通过与自监督方法的层次融合提升性能 | 仅在ADReSSo语料库上评估,未在更广泛或临床环境中验证;未详细讨论模型对不同语言或文化背景的泛化能力 | 开发一种非侵入性、基于语音的阿尔茨海默病早期检测方法 | 阿尔茨海默病患者的语音数据 | 自然语言处理 | 阿尔茨海默病 | 语音分析,认知声学符号转换 | 深度学习 | 语音数据 | ADReSSo语料库(具体样本数未在摘要中说明) | 未明确说明 | COASTAL框架(包含专用转换模块和上下文分析模块) | 准确率 | NA |
| 1503 | 2026-01-24 |
Deep learning motion correction of quantitative stress perfusion cardiovascular magnetic resonance
2026-Jan-20, Journal of cardiovascular magnetic resonance : official journal of the Society for Cardiovascular Magnetic Resonance
IF:4.2Q1
DOI:10.1016/j.jocmr.2026.102697
PMID:41571054
|
研究论文 | 本研究开发并评估了一种基于无监督深度学习的运动校正流程,用于定量应力灌注心血管磁共振成像,以提升运动校正的效率和鲁棒性 | 使用深度学习模型替代耗时的迭代配准优化,实现高效的单次估计,并利用主成分分析减轻动态对比剂影响,提高了处理速度和鲁棒性 | 研究未明确讨论模型在不同病理条件下的泛化能力,且样本量相对有限 | 开发一种更高效、鲁棒的运动校正方法,以改进定量应力灌注心血管磁共振成像的自动化分析 | 心血管磁共振成像中的心肌灌注序列,包括低分辨率动脉输入函数序列和质子密度加权图像 | 计算机视觉 | 心血管疾病 | 心血管磁共振成像 | 深度学习 | 图像 | 201名患者的多厂商数据,其中38例用于独立测试 | NA | NA | 时间强度曲线平滑度、Dice系数、灌注值标准差 | NA |
| 1504 | 2026-01-24 |
Semi-Supervised Fatty Liver Classification Using Attention-Based Graph Neural Network Models
2026-Jan-19, Journal of Korean medical science
IF:3.0Q1
DOI:10.3346/jkms.2026.41.e30
PMID:41555799
|
研究论文 | 本研究探讨了基于注意力机制的图神经网络在半监督学习环境下对脂肪肝疾病的预测效果 | 首次将注意力机制图神经网络应用于脂肪肝疾病的半监督分类,并利用GNNExplainer进行特征重要性分析 | 研究仅基于健康检查数据,未考虑更复杂的临床因素 | 开发数据高效的脂肪肝疾病预测模型 | 7,953名个体的临床变量数据 | 机器学习 | 脂肪肝 | 健康检查临床变量分析 | GNN | 临床变量数据 | 7,953名个体 | PyTorch | Graph Attention Network (GAT), Simplified Graph Transformer with Graph Attention | AUC | NA |
| 1505 | 2026-01-24 |
SMGDiff: step mapping generalized diffusion model for efficient noise reduction in cardiac-gated myocardial perfusion SPECT images
2026-Jan-17, EJNMMI physics
IF:3.0Q2
DOI:10.1186/s40658-025-00825-5
PMID:41546843
|
研究论文 | 本文提出了一种名为SMGDiff的轻量级广义扩散模型,用于高效降低心脏门控心肌灌注SPECT图像中的噪声 | 提出了一种新颖的步进映射广义扩散模型(SMGDiff),将心脏门控MP-SPECT图像作为扩散端点而非传统高斯噪声,并引入了一种新的均值保持退化算子,显著减少了采样步骤和推理时间;此外,设计了步进映射和误差优化模块(SMEO),利用上下文信息精确校准步进特征,从而最小化重建过程中的累积误差 | 研究基于回顾性数据集,样本量相对较小(50次扫描,36名患者),且未在外部独立数据集上进行验证 | 开发并评估一种轻量级广义扩散模型,以高效地对心脏门控心肌灌注SPECT图像进行去噪 | 心脏门控心肌灌注单光子发射计算机断层扫描(CG MP-SPECT)图像 | 医学图像处理 | 心血管疾病 | 心脏门控SPECT成像 | 扩散模型 | 医学图像(SPECT图像) | 50次MP-SPECT扫描(来自36名患者),分为8或16个心脏相位,共生成400/800个图像对 | 未明确指定,但提及了与CNN、U-Net、GAN和去噪扩散概率模型的比较 | SMGDiff(步进映射广义扩散模型),包含SMEO模块 | 峰值信噪比(PSNR)、结构相似性(SSIM)、归一化均方误差(NMSE)、联合直方图、线性回归分析、配对双尾t检验、Wilcoxon符号秩检验 | 未明确指定,但SMGDiff-5模型每片处理时间仅为0.024秒,相比1000步扩散模型的4.982秒显著提升效率 |
| 1506 | 2026-01-24 |
Ubiquitous sensing of marine activities via the cooperation of autonomous underwater vehicles
2026-Jan-17, Scientific reports
IF:3.8Q1
DOI:10.1038/s41598-025-29532-y
PMID:41547884
|
研究论文 | 本文提出了一种基于自主水下航行器(AUVs)的海洋活动泛在监测系统,通过深度学习技术估计目标姿态,并利用声纳进行水下目标探测 | 采用AUVs与岸基摄像头协同工作,结合无线通信网络和深度学习技术,实现了低成本、高可靠性的海洋活动智能监测 | NA | 开发一种智能、低成本、高可靠性的海洋活动监测系统 | 海洋活动,包括水面目标(如船只、浮标)和水下目标(如沉船、溺水人员) | 机器视觉 | NA | 深度学习技术,声纳探测 | NA | 图像,声纳数据 | NA | NA | NA | NA | NA |
| 1507 | 2026-01-24 |
Super-adhesive sensor based on amylopectin-polyacrylic acid hydrogel for deep learning-assisted sign language recognition
2026-Jan-17, Journal of colloid and interface science
IF:9.4Q1
DOI:10.1016/j.jcis.2026.139914
PMID:41570706
|
研究论文 | 本文设计了一种基于支链淀粉-聚丙烯酸水凝胶的超粘附传感器,并将其应用于深度学习辅助的手语识别系统 | 通过调整成分和网络结构,合理设计了聚丙烯酸/单宁酸/支链淀粉水凝胶,该水凝胶集成了优异的韧性、高灵敏度、增强的电导率和强大的粘附性等多种理想特性,并首次将其无缝集成到深度学习辅助的手语识别系统中 | NA | 开发一种高性能、超粘附的柔性可穿戴传感器,以解决现有设备粘附性差、性能不稳定的问题,并应用于人机交互和健康监测领域 | 聚丙烯酸/单宁酸/支链淀粉水凝胶传感器及其在信号检测和手语识别中的应用 | 机器学习 | NA | NA | 深度学习 | 传感器信号 | NA | NA | NA | NA | NA |
| 1508 | 2026-01-24 |
Deep generative modeling captures maturation-dependent pairing patterns in human antibodies
2026-Jan-16, iScience
IF:4.6Q1
DOI:10.1016/j.isci.2025.114447
PMID:41561375
|
研究论文 | 本文开发了一个两阶段深度学习框架,通过Transformer语言模型生成与重链配对的轻链序列,以揭示抗体成熟过程中的配对模式 | 首次将Transformer语言模型与序列到序列模型结合,用于生成抗体轻链,并揭示了成熟依赖性配对模式及三模态相似性分布 | 原生轻链恢复率中等,未明确说明模型在特定疾病抗体设计中的泛化能力 | 解码免疫库结构并设计治疗性抗体,通过计算模型理解抗体重链-轻链配对机制 | 人类抗体序列,特别是重链和轻链的配对关系 | 自然语言处理 | NA | 深度学习,序列生成 | Transformer, 序列到序列模型 | 文本序列(抗体重链和轻链的氨基酸序列) | NA | NA | Transformer | 原生轻链恢复率,胚系基因同一性,结构质量,框架和互补决定区覆盖范围 | NA |
| 1509 | 2026-01-24 |
Deep Learning Predicts Cardiac Output from Seismocardiographic Signals in Heart Failure
2026-Jan-15, The American journal of cardiology
DOI:10.1016/j.amjcard.2025.09.037
PMID:41038524
|
研究论文 | 本研究开发并评估了一种深度学习模型,用于直接从心衰患者的心震图、心电图和体重指数中预测心输出量 | 首次将深度学习与可穿戴心震图传感器结合,用于无创估计心输出量,尤其在低输出状态下表现出色 | 需要前瞻性多中心验证以确认普适性并评估临床影响 | 探索心震图作为无创心输出量测定替代方法的潜力 | 心衰患者 | 机器学习 | 心血管疾病 | 心震图, 心电图 | CNN | 信号数据 | 73名心衰患者 | NA | 深度卷积神经网络 | 平均偏差, 一致性界限 | NA |
| 1510 | 2026-01-24 |
Medical support platform for melanoma analysis and detection based on federated learning
2026-Jan-09, Scientific reports
IF:3.8Q1
DOI:10.1038/s41598-025-32453-5
PMID:41513722
|
研究论文 | 提出一种基于联邦学习的深度学习模型,用于从临床图像中检测黑色素瘤,并开发了配套的Web应用以辅助医生诊断 | 将联邦学习技术应用于黑色素瘤检测,在保护患者数据隐私的前提下实现多机构协同模型训练,同时整合了日照暴露和患者肤色等临床因素 | 未明确说明参与联邦学习的机构数量、数据分布异质性处理细节以及模型在不同肤色群体中的泛化性能验证 | 开发一个支持早期黑色素瘤检测的医疗辅助平台,提高诊断准确性并解决医疗数据孤岛问题 | 皮肤临床图像(黑色素瘤相关) | 计算机视觉 | 黑色素瘤 | 深度学习 | 深度学习模型 | 图像 | 未明确说明 | 未明确说明 | 未明确说明 | 准确率, ROC AUC | 未明确说明 |
| 1511 | 2026-01-24 |
Advancing endometriosis detection in daily practice: a deep learning-enhanced multi-sequence MRI analytical model
2026-Jan, Abdominal radiology (New York)
DOI:10.1007/s00261-025-04942-8
PMID:40232413
|
研究论文 | 本研究开发了一种基于深度学习的多序列MRI分析模型,用于提高子宫内膜异位症的检测准确性 | 首次在大型队列中使用多序列MRI数据构建深度学习模型,用于子宫内膜异位症的检测,并展示了与训练有素的放射科医生相当的检测性能 | 研究依赖于单一机构的数据库,可能存在选择偏差;模型性能在外部验证中尚未得到充分测试 | 评估深度学习工具在增强基于多序列MRI的子宫内膜异位症检测准确性方面的应用 | 经病理确诊的子宫内膜异位症患者及年龄匹配的无子宫内膜异位症诊断的对照组患者 | 数字病理学 | 子宫内膜异位症 | 多序列MRI(矢状位脂肪饱和T1加权、对比增强前后T1加权、T2加权) | CNN | 图像 | 病例组395名患者,对照组356名患者,总计751名患者 | NA | 3D-DenseNet-121 | F1分数, AUROCC, 灵敏度, 特异性, Fleiss' kappa | NA |
| 1512 | 2026-01-24 |
Artificial intelligence (AI) and CT in abdominal imaging: image reconstruction and beyond
2026-Jan, Abdominal radiology (New York)
DOI:10.1007/s00261-025-05031-6
PMID:40522387
|
综述 | 本文综述了人工智能在腹部CT成像中的应用,特别是深度学习重建技术及其超越图像重建的扩展作用 | 介绍了基于卷积神经网络的深度学习重建技术,克服了传统重建方法的高噪声和人工纹理限制,并探讨了其在低对比度病变检测、定量成像和工作流程优化中的扩展应用 | 在临床验证、标准化和广泛采用方面仍存在挑战 | 探索人工智能驱动的CT图像重建在腹部成像中的原理、进展和未来方向 | 腹部器官,包括肝脏、胰腺和肾脏 | 医学影像 | NA | 深度学习重建 | CNN | CT图像 | NA | NA | NA | 对比噪声比、病变检测、诊断置信度 | NA |
| 1513 | 2026-01-24 |
Update Disturbance-Resilient Analog ReRAM Crossbar Arrays for In-Memory Deep Learning Accelerators
2026-Jan, Advanced science (Weinheim, Baden-Wurttemberg, Germany)
DOI:10.1002/advs.202504578
PMID:40956570
|
研究论文 | 本研究提出了一种抗更新干扰的模拟ReRAM交叉阵列,用于内存深度学习加速器,旨在解决并行权重更新过程中的关键挑战 | 开发了一种基于350纳米硅技术的ReRAM器件,具有快速非易失性模拟切换和出色的抗更新干扰能力,能承受超过10万次脉冲,并通过COMSOL模拟分析了其干扰容忍机制 | 研究仍处于早期阶段,未提及大规模实际应用验证或与其他加速器技术的比较 | 加速内存训练算法,实现更可持续和节能的AI硬件 | 模拟ReRAM交叉阵列及其在内存深度学习加速器中的应用 | 机器学习 | NA | COMSOL Multiphysics模拟,硅技术制造 | NA | 模拟电信号数据 | NA | NA | NA | 抗干扰脉冲次数(超过100k),切换速度(60 ns) | COMSOL Multiphysics模拟软件 |
| 1514 | 2026-01-24 |
Deep learning powered breast ultrasound to improve characterization of breast masses: a prospective study
2026-Jan, Acta radiologica (Stockholm, Sweden : 1987)
DOI:10.1177/02841851251377927
PMID:40997147
|
研究论文 | 本研究评估了深度学习工具S-Detect在提高乳腺超声诊断准确性、标准化评估以及减少不必要活检方面的潜力 | 首次前瞻性评估深度学习工具S-Detect在真实临床环境中对不同经验水平放射科医生诊断性能的影响,并量化了其减少不必要活检的能力 | 研究样本量相对有限(230个乳腺肿块),且仅评估了单一深度学习工具,未与其他AI模型进行比较 | 评估深度学习工具S-Detect在增强乳腺超声诊断精度和标准化放射科医生评估方面的效果 | 216名患者的230个乳腺肿块 | 数字病理学 | 乳腺癌 | 超声成像 | 深度学习 | 图像 | 230个乳腺肿块(来自216名患者) | NA | S-Detect | 特异性, 阳性预测值, 阴性预测值, 准确率, 敏感性, AUC, Kappa一致性系数 | NA |
| 1515 | 2026-01-24 |
Nephrocast-V: A Deep Learning Model for the Prediction of Vancomycin Trough Concentration Using Electronic Health Record Data
2026-Jan, Pharmacotherapy
IF:2.9Q2
DOI:10.1002/phar.70062
PMID:41025800
|
研究论文 | 本研究开发了一个名为Nephrocast-V的深度学习模型,利用电子健康记录数据预测危重患者的万古霉素谷浓度,并提前两天提供剂量调整建议 | 结合了长短期记忆网络和多头注意力层,并引入跳跃连接以在模型最终层整合历史剂量信息,用于提前预测万古霉素谷浓度 | 研究数据来源于单一医疗中心的ICU患者,可能限制了模型的泛化能力 | 通过深度学习模型预测万古霉素谷浓度,以支持危重患者的个体化治疗药物监测和剂量优化 | 危重患者(入住ICU的成人)的万古霉素治疗数据 | 机器学习 | 细菌感染(如耐甲氧西林金黄色葡萄球菌感染) | 电子健康记录数据分析 | LSTM, Multi-Head Attention | 电子健康记录数据(包括人口统计学、合并症、生命体征、实验室测量、药物和万古霉素剂量信息) | 2205次符合资格的医疗接触(患者入住ICU的记录) | NA | 结合LSTM和Multi-Head Attention层的定制架构 | 平均绝对误差, 均方根误差 | NA |
| 1516 | 2026-01-24 |
A Biologically Informed Vision-Guided Framework for Interpretable T Cell Receptor-Epitope Binding Prediction
2026-Jan, Advanced science (Weinheim, Baden-Wurttemberg, Germany)
DOI:10.1002/advs.202512544
PMID:41199631
|
研究论文 | 提出了一种名为DAISY的生物信息学引导视觉框架,用于可解释的T细胞受体-表位结合预测 | 通过生物启发的条件自适应融合模块整合分层物理化学特征,联合建模残基级空间相互作用和全局生化背景,显著提升了在未见表位场景下的泛化能力 | 未明确说明模型在更广泛抗原多样性或不同MHC等位基因下的性能限制 | 开发一个稳健且可解释的深度学习框架,以准确预测T细胞受体与抗原表位之间的结合 | T细胞受体(TCR)与主要组织相容性复合体(MHC)分子呈递的抗原表位之间的相互作用 | 机器学习 | 癌症 | 深度学习 | 深度学习框架 | 序列数据(TCR和表位序列) | NA | NA | 条件自适应融合模块 | ROC-AUC, PR-AUC | NA |
| 1517 | 2026-01-24 |
The value of low-energy images combined with deep learning image reconstruction to improve image quality, reduce radiation and contrast doses in dual-energy computed tomography (CT) portal venography in cirrhotic patients
2026-Jan, Clinical radiology
IF:2.1Q2
DOI:10.1016/j.crad.2025.107139
PMID:41297158
|
研究论文 | 本研究探讨了在肝硬化患者的双能计算机断层扫描门静脉成像中,结合低能量图像与深度学习图像重建技术以改善图像质量、降低辐射和造影剂剂量的可行性 | 首次将低能量图像与深度学习图像重建技术结合应用于双能CT门静脉成像,实现了辐射剂量降低48%和造影剂剂量降低32%的同时提升图像质量 | 样本量较小(仅60例患者),且仅针对肝硬化患者,未涉及其他肝脏疾病或健康对照组 | 评估低能量图像结合深度学习图像重建在双能CT门静脉成像中改善图像质量并降低辐射和造影剂剂量的效果 | 肝硬化患者 | 数字病理学 | 肝硬化 | 双能计算机断层扫描,深度学习图像重建 | 深度学习图像重建 | 医学影像 | 60例肝硬化患者 | NA | 深度学习图像重建-H | 对比噪声比,信噪比,主观图像质量评分 | NA |
| 1518 | 2026-01-24 |
Exploring the Impact of an Artificial Intelligence-Based Intraoperative Image Navigation System in Laparoscopic Surgery on Clinical Outcomes: A Protocol for a Multicenter Randomized Controlled Trial
2026, European surgical research. Europaische chirurgische Forschung. Recherches chirurgicales europeennes
DOI:10.1159/000549894
PMID:41452791
|
研究论文 | 本研究是一项多中心随机对照试验协议,旨在评估基于深度学习的术中图像导航系统在腹腔镜结直肠手术中对临床结果的影响 | 首次通过随机对照试验设计,系统评估AI实时图像导航系统在腹腔镜手术中识别输尿管和自主神经的临床效果 | 研究仅针对腹腔镜左侧结直肠切除术,且样本来自特定高容量中心,可能限制结果的普遍适用性 | 评估AI术中导航系统在腹腔镜手术中的临床有效性和安全性 | 计划接受腹腔镜左侧结直肠切除术的18至80岁患者 | 计算机视觉 | 结直肠癌 | 深度学习 | CNN | 图像 | 来自日本三个高容量中心的患者,具体数量未在摘要中明确 | NA | NA | 手术时间、术中并发症、术后并发症、器官识别时间 | NA |
| 1519 | 2026-01-24 |
Multiview deep-learning-enabled histopathology for prognostic and therapeutic stratification in stage II colorectal cancer: A retrospective multicenter study
2026-Jan, PLoS medicine
IF:10.5Q1
DOI:10.1371/journal.pmed.1004614
PMID:41532433
|
研究论文 | 本研究开发并验证了名为SurvFinder的可解释深度学习框架,用于从结直肠癌II期患者的H&E染色全切片图像中提取组织生物标志物,以进行预后和治疗分层 | 首次提出多视角深度学习框架SurvFinder,能够自主识别三级淋巴结构(TLS)作为关键预后特征,并利用可解释AI方法确保模型透明度,超越了传统临床预后参数 | 研究为回顾性设计,缺乏前瞻性验证和真实世界临床部署 | 利用深度学习从全切片图像中提取可解释的组织生物标志物,以支持结直肠癌II期患者的个体化风险分层并探索与治疗结果的关联 | 结直肠癌II期患者 | 数字病理学 | 结直肠癌 | H&E染色 | 深度学习 | 图像 | 来自1,604名患者的6,950张H&E切片,涵盖中国四个独立队列 | NA | SurvFinder | AUROC, 风险比 | NA |
| 1520 | 2026-01-24 |
Deep learning detection and classification of fungal and non-fungal calcifications on paranasal sinus CT imaging
2026, PloS one
IF:2.9Q1
DOI:10.1371/journal.pone.0340832
PMID:41557658
|
研究论文 | 本研究开发并评估了一种用于在鼻窦CT影像上检测和分类窦内钙化的深度学习算法,以诊断真菌性鼻窦炎并区分真菌性与非真菌性鼻窦炎 | 开发了一个结合3D U-Net、YOLO v5和CNN的深度学习框架,用于自动分割鼻窦区域、检测钙化并精细分类钙化模式,以辅助真菌性鼻窦炎的诊断 | 数据集主要来自单一机构,尽管补充了时间和地理外部测试集,但样本量相对有限(277例),可能影响模型的泛化能力 | 开发一个深度学习算法,用于在鼻窦CT影像上自动检测和分类窦内钙化,以辅助诊断真菌性鼻窦炎 | 鼻窦CT影像中的窦内钙化 | 计算机视觉 | 鼻窦炎 | CT成像 | CNN | 图像 | 277例鼻窦CT病例,来自韩国高丽大学九老医院,并补充了时间和地理外部测试集 | NA | 3D U-Net, YOLO v5, CNN | Dice相似系数, 精确率, 召回率, F1分数, 准确率 | NA |