深度学习在生物医药领域的应用

本数据库通过收集和整理最新科研文献信息而得,供了解领域前沿进展之用。数据源自 PubMed Data ,每日自动更新(使用关键词“['deep learning']”过滤),已收录文献数量参见 统计表格。表格内容由 GPT 自动整理,可能存在错误或遗漏,请使用时务必注意核实!

如有建议或合作意向,欢迎联系 linlin.yan(AT)bioinfo.app 或 微信 yanlinlin82。本项目遵循 MIT 许可 发布,欢迎下载 源码 自行修改使用。如觉得不错,还请不吝 给我打赏,你的支持是我继续创新的重要动力!

Sample Image
添加微信请说明来意
Sample Image
微信赞赏

除通过在线浏览外,为方便用户离线查阅,本站也提供 付费下载(定价19.9元)。之所以考虑收费,是因为批量扫描这些文献并整理也是有一定成本的,还请理解并多多支持。本站数据会持续更新,而仅需一次付费,未来就可以随时重新下载到最新版本数据。

当前筛选条件: [分区不过滤] [IF不过滤] [发表日期不过滤] [清除筛选条件]
当前共找到 32372 篇文献,本页显示第 13201 - 13220 篇。
序号 推送日期 文章 类型 简述 创新点 不足 研究目的 研究对象 领域 病种 技术 模型 数据类型 样本量 算法框架 模型架构 性能指标 计算资源
13201 2025-04-25
Privacy-proof Live Surgery Streaming: Development and Validation of a Low-cost, Real-time Robotic Surgery Anonymization Algorithm
2024-Jul-01, Annals of surgery IF:7.5Q1
研究论文 开发并验证了一种低成本、实时机器人手术匿名化算法,用于隐私保护的实时手术流媒体 首创了一种手术匿名化算法,能够可靠且准确地实时移除体外图像,并在多种机器人平台上进行验证 NA 开发一种可靠、准确且实时的机器人手术匿名化算法,用于手术视频数据的隐私保护 机器人手术视频数据 计算机视觉 NA 深度学习 Robotic Anonymization Network 视频 63个手术视频,包含6种手术和4种机器人系统,共496,828张图像 NA NA NA NA
13202 2025-04-25
Analyzing heterogeneity in Alzheimer Disease using multimodal normative modeling on imaging-based ATN biomarkers
2024-Jun-30, bioRxiv : the preprint server for biology
research paper 本研究采用基于深度学习的多模态规范框架,分析阿尔茨海默病(AD)患者个体水平的ATN成像生物标志物变异 首次将多模态规范建模应用于ATN成像生物标志物,以分析AD的异质性 研究仅基于横断面数据,缺乏纵向追踪验证 探究阿尔茨海默病的异质性表现 阿尔茨海默病患者(淀粉样蛋白阳性个体)与对照组(淀粉样蛋白阴性个体) digital pathology geriatric disease T1加权MRI、淀粉样蛋白PET、tau蛋白PET 深度学习模型 医学影像数据 发现队列665人,验证队列430人 NA NA NA NA
13203 2025-04-25
Enhanced Cell Tracking Using A GAN-based Super-Resolution Video-to-Video Time-Lapse Microscopy Generative Model
2024-Jun-14, bioRxiv : the preprint server for biology
research paper 该论文提出了一种基于GAN的超分辨率视频到视频延时显微镜生成模型,用于增强细胞追踪 提出了一种称为tGAN的GAN-based延时显微镜生成器,能够显著提高合成注释延时显微镜数据的质量和多样性,采用双分辨率架构合成低分辨率和高分辨率图像 需要进一步验证模型在更大规模和多样性数据集上的泛化能力 解决细胞追踪中由于缺乏大规模多样化注释数据集而导致的深度学习模型泛化能力不足的问题 细胞动态行为 digital pathology NA time-lapse microscopy GAN video NA NA NA NA NA
13204 2025-04-25
MulTFBS: A Spatial-Temporal Network with Multichannels for Predicting Transcription Factor Binding Sites
2024-05-27, Journal of chemical information and modeling IF:5.6Q1
research paper 提出了一种名为MulTFBS的多通道深度学习框架,用于预测转录因子结合位点(TFBSs) 整合了DNA序列的不同类型特征,包括独立的一热编码、词嵌入编码(可结合上下文信息并提取序列的全局特征)和双螺旋三维结构特征,通过空间-时间网络结合CNN和双向LSTM及注意力机制有效提取序列高层信息 未明确提及 揭示影响转录因子结合特异性的机制,理解基因调控 转录因子结合位点(TFBSs) natural language processing NA 深度学习 CNN, bidirectional LSTM, attention mechanism DNA序列 66个不同转录因子的通用蛋白结合微阵列数据集 NA NA NA NA
13205 2025-04-25
MolLoG: A Molecular Level Interpretability Model Bridging Local to Global for Predicting Drug Target Interactions
2024-05-27, Journal of chemical information and modeling IF:5.6Q1
research paper 提出了一种名为MolLoG的深度学习网络结构,用于预测药物与靶标之间的相互作用,并提供分子层面的解释 MolLoG通过局部特征编码器(LFE)和全局交互学习(GIL)模块,平衡了局部特征提取与全局交互表示,提供了对黑盒结果的生物学相关解释 未提及具体的数据集规模或实验环境限制 提高药物与靶标相互作用预测的准确性和可解释性 药物与蛋白质分子 machine learning NA 深度学习(DL) 图卷积网络(GCN)、多层感知机(MLP) 分子结构数据 四个数据集 NA NA NA NA
13206 2025-04-25
CNSMolGen: A Bidirectional Recurrent Neural Network-Based Generative Model for De Novo Central Nervous System Drug Design
2024-05-27, Journal of chemical information and modeling IF:5.6Q1
研究论文 本文介绍了一种基于双向循环神经网络(Bi-RNN)的生成模型CNSMolGen,用于中枢神经系统(CNS)药物的从头设计 开发了首个专门针对CNS药物设计的Bi-RNN生成模型,能够生成90%以上全新且可合成的CNS药物分子结构 未提及模型在更大规模或更复杂CNS靶点上的泛化能力验证 加速中枢神经系统药物的发现与优化 中枢神经系统药物分子 机器学习 神经退行性疾病/精神疾病 深度学习生成模型 Bi-RNN 分子结构数据 未明确说明样本量(使用SERT靶点药物作为微调数据集) NA NA NA NA
13207 2025-04-25
Predicting Antimicrobial Peptides Using ESMFold-Predicted Structures and ESM-2-Based Amino Acid Features with Graph Deep Learning
2024-05-27, Journal of chemical information and modeling IF:5.6Q1
研究论文 提出了一种基于ESMFold预测结构和ESM-2氨基酸特征的图深度学习框架,用于预测抗菌肽 结合了最新的三级结构预测技术和进化信息编码方法,避免了多重序列对齐的内存和时间消耗 依赖于预测的肽结构,可能受到预测准确性的影响 开发一种无需对齐的模型,用于高效预测抗菌肽 抗菌肽(AMPs) 机器学习 抗菌耐药性 ESMFold结构预测,ESM-2进化模型,图注意力网络(GAT) GAT 氨基酸序列和预测的3D结构 67,058种肽 NA NA NA NA
13208 2025-04-25
Prediction of Transcription Factor Binding Sites on Cell-Free DNA Based on Deep Learning
2024-05-27, Journal of chemical information and modeling IF:5.6Q1
研究论文 本研究提出了一种基于深度学习的非侵入性方法,用于预测细胞游离DNA上的转录因子结合位点 利用卷积神经网络和长短期记忆网络从已知的转录因子结合位点学习序列信息,实现了非侵入性预测 研究中未提及样本的具体数量或多样性,可能影响模型的泛化能力 探索基因调控机制,为非侵入性动态监测疾病提供技术指导 细胞游离DNA上的转录因子结合位点 机器学习 癌症 深度学习 CNN, LSTM DNA序列数据 NA NA NA NA NA
13209 2025-10-07
Natural language processing models reveal neural dynamics of human conversation
2024-Apr-18, bioRxiv : the preprint server for biology
研究论文 本研究结合预训练深度学习自然语言处理模型与颅内神经元记录,揭示了人类自然对话中语言产生和理解的神经动态机制 首次将预训练深度学习NLP模型与颅内神经元记录相结合,在自然对话情境下发现语言产生和理解及其转换的可靠神经信号 研究基于颅内记录,样本量有限,且神经活动模式在语言产生和理解中仅部分重叠 探索人类自然对话中语言产生和理解及其转换的神经机制 人类自然对话过程中的神经活动 自然语言处理 NA 颅内神经元记录,深度学习自然语言处理 预训练深度学习模型 文本,神经电生理信号 NA NA NA NA NA
13210 2025-04-25
Fine-Grained Forecasting of COVID-19 Trends at the County Level in the United States
2024-Mar-25, medRxiv : the preprint server for health sciences
research paper 本文提出了一种名为FIGI-Net的循环神经网络模型,用于预测美国县级COVID-19的感染趋势 FIGI-Net利用堆叠的双向LSTM结构,能够提前两周准确预测县级COVID-19感染趋势,并能预测疾病趋势的突然变化 NA 提高COVID-19短期疾病活动预测的准确性和实时性 美国县级COVID-19感染趋势 machine learning COVID-19 deep learning LSTM time-series data 县级数据(具体数量未提及) NA NA NA NA
13211 2025-04-25
Single-cell spatial multi-omics and deep learning dissect enhancer-driven gene regulatory networks in liver zonation
2024-01, Nature cell biology IF:17.3Q1
研究论文 本研究结合单细胞多组学、空间组学、大规模并行报告基因检测和深度学习技术,解析了小鼠肝脏细胞类型中的增强子-基因调控网络 首次结合多种组学技术和深度学习模型DeepLiver,系统解析了肝脏分区中的增强子驱动基因调控网络 研究主要基于小鼠模型,人类肝脏中的适用性需要进一步验证 解析肝脏分区现象的基因调控机制 小鼠肝脏细胞(特别是肝细胞) 生物信息学 NA 单细胞多组学、空间组学、大规模并行报告基因检测 DeepLiver(分层深度学习模型) 单细胞基因表达数据、染色质可及性数据 NA NA NA NA NA
13212 2025-04-25
Structural characterization of an intrinsically disordered protein complex using integrated small-angle neutron scattering and computing
2023-10, Protein science : a publication of the Protein Society IF:4.5Q1
研究论文 本文提出了一种结合小角中子散射和计算方法的集成方法,用于解析两个内在无序区域形成的复合物的结构集合 结合选择性氘标记的小角中子散射实验、微秒级全原子分子动力学模拟和基于自动编码器的深度学习算法,提出了一种新的集成方法来表征内在无序蛋白质的结构集合 实验时间尺度通常捕获的是多个构象的平均测量值,导致复杂的小角中子散射数据难以解析 研究内在无序蛋白质和蛋白质内在无序区域的结构集合,以理解其结构与功能关系 由两个内在无序区域形成的复合物 结构生物学 NA 小角中子散射(SANS)、分子动力学(MD)模拟、深度学习(DL) 自动编码器 中子散射数据、分子动力学模拟数据 NA NA NA NA NA
13213 2025-10-07
Rapid and Portable Quantification of HIV RNA via a Smartphone-enabled Digital CRISPR Device and Deep Learning
2023-May-16, medRxiv : the preprint server for health sciences
研究论文 开发了一种基于智能手机的数字CRISPR设备,结合深度学习算法快速定量检测HIV RNA 首次将数字CRISPR检测与智能手机平台集成,实现HIV RNA的快速便携定量检测 NA 开发便携式HIV病毒载量监测工具以支持艾滋病治疗管理 HIV RNA 数字病理 艾滋病 RT-RPA-CRISPR, 荧光成像 深度学习 荧光图像 NA NA NA 检测灵敏度 智能手机平台
13214 2025-10-07
Spikebench: An open benchmark for spike train time-series classification
2023-01, PLoS computational biology IF:3.8Q1
研究论文 提出一个用于脉冲序列时间序列分类的开放基准测试Spikebench 基于开放获取神经活动数据集构建首个脉冲序列分类基准,包含多种学习任务,并证明基于手工特征工程的方法与最先进深度学习模型性能相当 NA 为神经解码领域提供多样化和具有挑战性的基准测试 神经脉冲序列数据 机器学习 NA 神经信号记录 决策树集成, 深度神经网络 时间序列数据 NA NA NA NA NA
13215 2025-10-07
Exploration of the intelligent-auxiliary design of architectural space using artificial intelligence model
2023, PloS one IF:2.9Q1
研究论文 探索基于人工智能模型的建筑空间智能辅助设计方法 将AI辅助模型与建筑空间智能深度融合,通过深度学习实现建筑空间的智能设计 NA 提高建筑设计行业的效率,促进建筑空间设计的智能化和数字化转型 建筑空间设计,三维建筑模型 计算机视觉 NA 深度学习 深度学习模型 三维模型数据 UrbanScene3D数据集中的3D模型 NA NA 模型拟合度,智能评分 NA
13216 2025-10-07
Artificial Intelligence for Intraoperative Guidance: Using Semantic Segmentation to Identify Surgical Anatomy During Laparoscopic Cholecystectomy
2022-08-01, Annals of surgery IF:7.5Q1
研究论文 开发并评估用于腹腔镜胆囊切除术中识别安全/危险解剖区域的人工智能模型 首次使用语义分割技术实时识别腹腔镜胆囊切除术中的安全/危险解剖区域和关键解剖标志 研究基于单中心数据集,未在真实手术环境中进行实时验证 开发术中实时解剖识别AI系统以减少手术不良事件 腹腔镜胆囊切除术视频帧中的解剖结构 计算机视觉 胆囊疾病 深度学习 CNN 视频帧图像 290个手术视频的2627帧图像,来自37个国家136个机构的153名外科医生 NA 语义分割网络 IOU, F1分数, 准确率, 灵敏度, 特异性 NA
13217 2025-10-07
Unreferenced English articles' translation quality-oriented automatic evaluation technology using sparse autoencoder under the background of deep learning
2022, PloS one IF:2.9Q1
研究论文 提出一种基于稀疏自编码器的深度学习模型,用于无参考英文文章的翻译质量自动评估 在双语词无监督学习阶段使用自编码器重构翻译语言向量特征,并将翻译信息融入双语词优化特征提取效果 未明确说明模型的具体局限性 实现无参考英文文章的自动翻译质量评估 无参考英文文章的翻译质量 自然语言处理 NA 深度学习 自编码器,稀疏自编码器 文本 句子数量从1,000到6,000 NA 自编码器 BLEU NA
13218 2025-04-24
Comprehensive Raman spectroscopy analysis for differentiating toxic cyanobacteria through multichannel 1D-CNNs and SHAP-based explainability
2025-Sep-01, Talanta IF:5.6Q1
研究论文 结合拉曼光谱和深度学习技术对四种有毒蓝藻进行分类的研究 采用多通道一维卷积神经网络(1D-CNN)结合SHAP解释性方法,提高了分类准确率并增强了模型的可解释性 仅针对四种蓝藻物种进行研究,样本多样性可能有限 开发一种快速准确识别有毒蓝藻物种的方法,以支持水质监测和有害藻华早期检测 四种有毒蓝藻物种:Dolichospermum crassum, Aphanizomenon sp., Planktothrix agardhii 和 Microcystis aeruginosa 机器学习 NA 拉曼光谱 1D-CNN 光谱数据 四种蓝藻物种的光谱数据 NA NA NA NA
13219 2025-04-24
Advanced SERSome-based artificial-intelligence technology for identifying medicinal and edible homologs
2025-Sep-01, Talanta IF:5.6Q1
研究论文 本研究提出了一种结合表面增强拉曼光谱(SERS)和深度学习的新方法,用于快速识别药食同源物质(MEHs) 利用基于光谱集的SERS(称为'SERSome')与深度学习结合,开发了一种新型识别模型,避免了反应过程中额外保护剂的使用,并克服了MEHs的荧光干扰 NA 提高药食同源物质的质量控制和快速识别能力 药食同源物质(MEHs) 机器学习 NA 表面增强拉曼光谱(SERS) 深度学习 光谱数据 NA NA NA NA NA
13220 2025-04-24
Transformer-based deep learning models for quantification of La, Ce, and Nd in rare earth ores using laser-induced breakdown spectroscopy
2025-Sep-01, Talanta IF:5.6Q1
研究论文 本文提出了一种基于iTransformer-BiLSTM(iTBi)深度学习算法和随机森林(RF)算法的LIBS定量分析模型,用于精确测定稀土矿石中的La、Ce和Nd元素浓度 提出iTBi-LIBS和iTBi-RF-LIBS集成模型,有效降低基质效应和光谱重叠干扰,提高了定量分析的准确性 样本量较小(35个样本),且浓度范围有限(La: 0-1.924wt%, Ce: 0-2.917wt%, Nd: 0-1.492wt%) 开发一种高效的LIBS定量分析方法,用于稀土矿石中La、Ce和Nd元素的实时定量分析 稀土矿石中的La、Ce和Nd元素 机器学习 NA 激光诱导击穿光谱(LIBS) iTransformer-BiLSTM(iTBi)、随机森林(RF) 光谱数据 35个样本 NA NA NA NA
回到顶部