本数据库通过收集和整理最新科研文献信息而得,供了解领域前沿进展之用。数据源自 PubMed Data ,每日自动更新(使用关键词“['deep learning']
”过滤),已收录文献数量参见 统计表格。表格内容由 GPT 自动整理,可能存在错误或遗漏,请使用时务必注意核实!
如有建议或合作意向,欢迎联系 linlin.yan(AT)bioinfo.app 或 微信 yanlinlin82。本项目遵循 MIT 许可 发布,欢迎下载 源码 自行修改使用。如觉得不错,还请不吝 给我打赏,你的支持是我继续创新的重要动力!
除通过在线浏览外,为方便用户离线查阅,本站也提供 付费下载(定价19.9元)。之所以考虑收费,是因为批量扫描这些文献并整理也是有一定成本的,还请理解并多多支持。本站数据会持续更新,而仅需一次付费,未来就可以随时重新下载到最新版本数据。
序号 | 推送日期 | 文章 | 类型 | 简述 | 创新点 | 不足 | 研究目的 | 研究对象 | 领域 | 病种 | 技术 | 模型 | 数据类型 | 样本量 | 算法框架 | 模型架构 | 性能指标 | 计算资源 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
13261 | 2025-04-24 |
Real-Time Typical Urodynamic Signal Recognition System Using Deep Learning
2025-Mar, International neurourology journal
IF:1.8Q3
DOI:10.5213/inj.2448430.215
PMID:40211837
|
research paper | 本研究开发了一种基于深度学习的实时尿动力学信号识别系统,用于辅助医生完成高质量的尿动力学检查 | 首次将深度学习算法应用于典型尿动力学信号的实时识别,提高了尿动力学检查的解读质量和效率 | 这是一项回顾性单中心研究,模型的泛化能力尚未得到验证 | 通过深度学习算法标准化尿动力学检查并确保其临床参考价值 | 神经源性膀胱成年患者的尿动力学图像数据 | digital pathology | neurogenic bladder | deep learning | Yolov5l | image | 400名神经源性膀胱患者(共2655张图像) | NA | NA | NA | NA |
13262 | 2025-10-07 |
Deep learning on pre-procedural computed tomography and clinical data predicts outcome following stroke thrombectomy
2025-Feb-14, Journal of neurointerventional surgery
IF:4.5Q1
DOI:10.1136/jnis-2023-021154
PMID:38527795
|
研究论文 | 本研究利用深度学习方法基于术前CT影像和临床数据预测卒中患者血栓切除术后的功能结局 | 首次将深度学习应用于术前CT影像与临床数据的融合分析,并与传统机器学习方法和现有预后工具MR PREDICTS进行系统性比较 | 仅使用术前数据,未纳入术中和术后数据;样本量相对有限 | 改进缺血性卒中患者接受血管内血栓切除术前的预后预测能力 | 接受血管内血栓切除术的缺血性卒中患者 | 医学影像分析 | 卒中 | CT头部扫描, CT血管造影 | 深度学习模型, 逻辑回归, 随机森林 | 影像数据, 临床数据 | 975名患者(模型开发队列778人,外部验证队列197人) | NA | NA | AUC | NA |
13263 | 2025-04-24 |
Deep learning model based on contrast-enhanced ultrasound for predicting vessels encapsulating tumor clusters in hepatocellular carcinoma
2025-Feb, European radiology
IF:4.7Q1
DOI:10.1007/s00330-024-10985-0
PMID:39066894
|
研究论文 | 基于对比增强超声的深度学习模型用于预测肝细胞癌中的血管包裹肿瘤簇模式 | 提出了一种非侵入性的深度学习方法,利用对比增强超声图像预测肝细胞癌中的VETC模式,并评估其对术后早期复发的预测价值 | 研究为回顾性设计,样本量相对较小(242例患者) | 开发并验证一种非侵入性工具,用于预测肝细胞癌中的VETC模式和术后早期复发风险 | 肝细胞癌患者 | 数字病理 | 肝细胞癌 | 对比增强超声(CEUS) | ResNet-18 CNN | 图像 | 242例肝细胞癌患者(训练组195例,测试组47例) | NA | NA | NA | NA |
13264 | 2025-04-24 |
Multi-reader multiparametric DECT study evaluating different strengths of iterative and deep learning-based image reconstruction techniques
2025-Feb, European radiology
IF:4.7Q1
DOI:10.1007/s00330-024-10974-3
PMID:39046499
|
research paper | 本研究通过多读者比较,评估了深度学习图像重建(DLIR)与标准自适应统计迭代重建-V(ASIR-V)在多参数双能CT(DECT)图像重建中的表现 | 首次在多参数DECT图像重建中比较了DLIR与ASIR-V的不同强度,并发现DLIR在图像质量上具有优势 | 研究为回顾性设计,样本量相对较小(100例患者) | 比较DLIR与ASIR-V在多参数DECT图像重建中的性能差异 | 接受门静脉期腹部CT扫描的100例患者 | 医学影像处理 | NA | 双能CT(DECT)扫描 | 深度学习图像重建(DLIR) | CT图像 | 100例患者 | NA | NA | NA | NA |
13265 | 2025-04-24 |
Development of a Deep Learning Model for Classification of Hepatic Steatosis from Clinical Standard Ultrasound
2025-02, Ultrasound in medicine & biology
|
研究论文 | 开发了一种深度学习模型,用于从临床标准超声图像中分类肝脂肪变性 | 利用深度学习技术从标准灰度超声图像中分类肝脂肪变性,提供高敏感性和准确性 | 单中心回顾性研究,样本量相对较小(403例患者) | 开发一种深度学习程序,用于从标准超声图像中分类肝脂肪变性 | 肝脂肪变性患者 | 数字病理学 | 肝脂肪变性 | 深度学习 | 深度学习多实例程序 | 图像 | 403例患者的403次超声检查 | NA | NA | NA | NA |
13266 | 2025-10-07 |
The Future of Artificial Intelligence Using Images and Clinical Assessment for Difficult Airway Management
2025-Feb-01, Anesthesia and analgesia
IF:4.6Q1
DOI:10.1213/ANE.0000000000006969
PMID:38557728
|
综述 | 本文综述了人工智能在困难气道管理中应用的优势、临床影响及未来发展方向 | 探讨了智能插管设备的未来发展方向及机器学习在困难喉镜预测中的建模应用 | NA | 评估人工智能在困难气道管理中的应用价值及发展前景 | 困难气道患者 | 计算机视觉 | 气道管理相关疾病 | 医学影像技术 | 深度学习,机器学习 | 图像 | NA | NA | NA | NA | NA |
13267 | 2025-04-24 |
Deep Learning Based Automatic Segmentation of the Thoracic Aorta from Chest Computed Tomography in Healthy Korean Adults
2025-Jan, European journal of vascular and endovascular surgery : the official journal of the European Society for Vascular Surgery
IF:5.7Q1
DOI:10.1016/j.ejvs.2024.07.030
PMID:39089448
|
研究论文 | 本研究利用深度学习技术自动分割健康韩国成人胸部计算机断层扫描中的胸主动脉,并建立主动脉各区域的参考值 | 首次使用全自动深度学习分割方法建立主动脉各区域的参考值,并验证其与手动校正结果的可靠性 | 研究仅针对健康韩国成人,可能不适用于其他人群或患者 | 建立主动脉各区域的参考值,以更好地理解主动脉夹层或动脉瘤的干预措施 | 704名健康成人(平均年龄50.6±7.5岁;男性407人,占57.8%) | 数字病理 | 心血管疾病 | 对比增强胸部计算机断层扫描(CT) | CNN | 3D CT图像 | 704名健康成人 | NA | NA | NA | NA |
13268 | 2025-04-24 |
Segmentation and Vascular Vectorization for Coronary Artery by Geometry-Based Cascaded Neural Network
2025-Jan, IEEE transactions on medical imaging
IF:8.9Q1
DOI:10.1109/TMI.2024.3435714
PMID:39078771
|
研究论文 | 提出一种基于几何的级联神经网络方法,用于冠状动脉的分割和血管向量化 | 1) 设计了一个级联网络,结合几何变形网络,用于冠状动脉分割和结果向量化,生成的冠状动脉网格连续且准确 2) 不同于传统的基于体素标签的marching cube方法生成的网格注释,重建了具有规则化形态的更精细的向量化网格 3) 收集了一个包含200例冠状动脉疾病CCTA图像的数据集CCA-200 | NA | 解决冠状动脉分割中的碎片化问题,提高分割和向量化的准确性 | 冠状动脉 | 数字病理 | 心血管疾病 | 深度学习 | 级联神经网络 | 医学图像(CCTA) | 200例CCTA图像(CCA-200数据集)和公开ASOCA数据集 | NA | NA | NA | NA |
13269 | 2025-04-24 |
Unsupervised Domain Adaptation for EM Image Denoising With Invertible Networks
2025-Jan, IEEE transactions on medical imaging
IF:8.9Q1
DOI:10.1109/TMI.2024.3431192
PMID:39028599
|
研究论文 | 提出了一种基于可逆网络的无监督域自适应方法,用于电子显微镜(EM)图像去噪 | 首次提出无监督域自适应EM图像去噪方法,通过域对齐建立共享的域无关内容空间,并引入域正则化确保精确对齐 | 方法依赖于EM图像内容特征的相似性假设,可能不适用于内容差异较大的图像 | 解决电子显微镜图像去噪中存在的域偏移问题 | 电子显微镜(EM)图像 | 计算机视觉 | NA | 无监督域自适应 | 可逆网络 | 图像 | 合成和真实EM数据集 | NA | NA | NA | NA |
13270 | 2025-04-24 |
Deep learning methods for protein function prediction
2025-Jan, Proteomics
IF:3.4Q2
DOI:10.1002/pmic.202300471
PMID:38996351
|
review | 本文深入回顾了近年来深度学习在蛋白质功能预测领域的最新发展 | 总结了该领域的重大进展,并指出了几个待解决的主要挑战及潜在探索方向 | 未提及具体实验验证或实际应用效果的局限性 | 推进蛋白质功能预测领域的发展 | 蛋白质功能预测 | 生物信息学 | NA | 深度学习 | NA | 蛋白质序列、结构、相互作用及其他相关信息 | NA | NA | NA | NA | NA |
13271 | 2025-04-24 |
Coati optimization algorithm for brain tumor identification based on MRI with utilizing phase-aware composite deep neural network
2025, Electromagnetic biology and medicine
IF:1.6Q4
DOI:10.1080/15368378.2024.2401540
PMID:39835842
|
research paper | 提出了一种基于MRI的脑肿瘤识别方法,使用相位感知复合深度神经网络和Coati优化算法 | 结合相位感知复合深度神经网络和Coati优化算法,提高了脑肿瘤识别的准确率、召回率和精确度 | 未提及具体的数据集来源和样本数量,可能影响方法的泛化能力 | 提高基于MRI的脑肿瘤识别准确率 | 脑肿瘤MRI图像 | digital pathology | brain tumor | MRI, Multivariate Fast Iterative Filtering (MFIF), Self-Supervised Nonlinear Transform (SSNT) | Phase-aware Composite Deep Neural Network (PACDNN), Coati Optimized Algorithm (COA) | image | NA | NA | NA | NA | NA |
13272 | 2025-10-07 |
Predicting Blood Pressures for Pregnant Women by PPG and Personalized Deep Learning
2025-Jan, IEEE journal of biomedical and health informatics
IF:6.7Q1
DOI:10.1109/JBHI.2024.3386707
PMID:38598377
|
研究论文 | 本研究通过光电容积脉搏波数据和个性化深度学习模型预测孕妇血压,为子痫前期提供有效预警 | 提出三阶段建模方法(基线模型构建、孕妇数据微调、个性化迁移学习),结合1D-CNN与CBAM注意力机制和双向GRU网络 | 样本量相对有限(仅40名孕妇),未提及模型在更广泛人群中的泛化能力验证 | 开发连续无袖带血压监测系统,实现孕妇血压精准预测和子痫前期预警 | 194名受试者(包括154名正常个体和40名孕妇) | 机器学习 | 妊娠期疾病 | 光电容积脉搏波 | 1D-CNN, GRU | 生理信号数据 | 194名受试者(154名正常个体,40名孕妇) | NA | 1D-CNN with CBAM, Bi-directional GRU, Attention layers | 平均误差, 标准差 | NA |
13273 | 2025-04-24 |
Quad-tree Based Driver Classification using Deep Learning for Mild Cognitive Impairment Detection
2025, IEEE access : practical innovations, open solutions
IF:3.4Q2
DOI:10.1109/access.2025.3558706
PMID:40256415
|
研究论文 | 提出一种基于四叉树的深度学习方法,用于通过GPS数据识别驾驶员是否患有轻度认知障碍 | 引入地理区域四叉树结构捕捉驾驶轨迹的空间层次结构,并提出新的驾驶特征表示方法用于CNN分类 | NA | 通过驾驶模式分析识别轻度认知障碍驾驶员 | 驾驶员的GPS轨迹数据 | 机器学习 | 老年疾病 | GPS数据分析 | CNN | GPS轨迹数据 | 真实世界数据集(具体数量未说明) | NA | NA | NA | NA |
13274 | 2025-04-24 |
Interplay between noise-induced sensorineural hearing loss and hypertension: pathophysiological mechanisms and therapeutic prospects
2025, Frontiers in cellular neuroscience
IF:4.2Q2
DOI:10.3389/fncel.2025.1523149
PMID:40260077
|
review | 本文综述了噪声性听力损失(NIHL)的病理生理学、对血迷路屏障(BLB)的影响以及新兴治疗方法 | 探讨了神经调节和基于载体的方法在克服BLB等生物屏障方面的潜力,以及计算化学方法在药物开发中的应用 | 主要集中于NIHL的机制和潜在治疗方法,缺乏具体临床试验数据的支持 | 详细研究NIHL及其潜在机制、生理影响和前沿治疗策略 | 噪声性听力损失及其相关病理生理机制 | NA | 心血管疾病 | 分子对接、分子动力学模拟、QSAR/QSPR分析、网络药理学 | machine/deep learning algorithms | NA | NA | NA | NA | NA | NA |
13275 | 2025-04-24 |
Mitigating Aberration-Induced Noise: A Deep Learning-Based Aberration-to- Aberration Approach
2024-Dec, IEEE transactions on medical imaging
IF:8.9Q1
DOI:10.1109/TMI.2024.3422027
PMID:38959140
|
研究论文 | 本文提出了一种基于深度学习的无需真实数据的相位像差校正方法 | 首次提出无需真实数据即可校正相位像差的深度学习方法,并设计了自适应混合损失函数以提高性能 | 未明确说明方法在复杂临床环境中的泛化能力 | 解决超声成像中相位像差导致的图像质量下降问题 | 超声成像中的相位像差 | 医学影像处理 | NA | 深度学习 | CNN | 超声射频数据(RF data)和B模式图像 | 超过180,000张带有相位像差的单平面波图像(RF数据) | NA | NA | NA | NA |
13276 | 2025-04-24 |
PolarFormer: A Transformer-Based Method for Multi-Lesion Segmentation in Intravascular OCT
2024-Dec, IEEE transactions on medical imaging
IF:8.9Q1
DOI:10.1109/TMI.2024.3417007
PMID:38900618
|
研究论文 | 提出了一种基于Transformer的多病灶分割方法PolarFormer,用于血管内OCT图像中的多类别易损斑块分割 | 引入了Polar Attention模块,模拟易损斑块在径向的空间关系,并整合了斑块的空间分布先验知识 | 研究受限于公开的大规模多类别易损斑块标注的血管内OCT数据集的缺乏 | 解决血管内OCT图像中多类别易损斑块分割的挑战 | 血管内OCT图像中的多类别易损斑块 | 计算机视觉 | 心血管疾病 | 深度学习 | Transformer | 图像 | 70个回拉数据 | NA | NA | NA | NA |
13277 | 2025-04-24 |
CareSleepNet: A Hybrid Deep Learning Network for Automatic Sleep Staging
2024-Dec, IEEE journal of biomedical and health informatics
IF:6.7Q1
DOI:10.1109/JBHI.2024.3426939
PMID:38990749
|
research paper | 提出了一种名为CareSleepNet的混合深度学习网络,用于从多导睡眠图(PSG)记录中自动进行睡眠分期 | 设计了多尺度卷积-Transformer时段编码器来捕捉局部和全局特征,并基于共同注意力机制开发了跨模态上下文编码器来建模不同模态间的关系 | 未明确提及具体局限性,但暗示现有研究忽略了全局特征和跨模态关系 | 开发高性能的自动睡眠分期方法 | 多导睡眠图(PSG)记录的睡眠数据 | digital pathology | geriatric disease | deep learning | CNN, Transformer | 生理信号(EEG和EOG) | 一个私有数据集SSND和两个公共数据集Sleep-EDF-153和ISRUC | NA | NA | NA | NA |
13278 | 2025-04-24 |
BP-Net: Monitoring "Changes" in Blood Pressure Using PPG With Self-Contrastive Masking
2024-Dec, IEEE journal of biomedical and health informatics
IF:6.7Q1
DOI:10.1109/JBHI.2024.3422023
PMID:38954566
|
研究论文 | 提出了一种名为BP-Net的新方法,通过光电容积图(PPG)监测血压变化,而非直接估计血压值 | 将问题重新定义为跟踪血压在一段时间内的变化,而非直接估计其值,并提出了一种自对比掩码(SCM)模型进行成对时间比较 | 在训练期间未见过的受试者数据上,准确率为75.97%/73.19%,仍有提升空间 | 通过PPG信号监测血压的急性变化,为临床应用(如高血压急症)提供潜在价值 | 光电容积图(PPG)信号 | 机器学习 | 心血管疾病 | 深度学习 | BP-Net, SCM | 生理信号 | 使用PulseDB数据集,涉及未见过的受试者数据 | NA | NA | NA | NA |
13279 | 2025-04-24 |
Uni4Eye++: A General Masked Image Modeling Multi-Modal Pre-Training Framework for Ophthalmic Image Classification and Segmentation
2024-Dec, IEEE transactions on medical imaging
IF:8.9Q1
DOI:10.1109/TMI.2024.3422102
PMID:38954581
|
研究论文 | 提出了一种名为Uni4Eye++的通用自监督Transformer框架,用于眼科图像的分类和分割任务 | 采用图像熵引导的掩码策略重建更具信息量的图像块,并引入动态头部生成器模块减轻模态混淆 | 未明确提及具体局限性 | 开发一种能够利用大量未标记眼科图像的自监督学习框架 | 眼科图像(包括2D和3D图像) | 计算机视觉 | 眼科疾病 | 自监督学习(SSL) | Transformer | 图像 | 未明确提及具体样本数量 | NA | NA | NA | NA |
13280 | 2025-04-24 |
Multi-Label Chest X-Ray Image Classification With Single Positive Labels
2024-Dec, IEEE transactions on medical imaging
IF:8.9Q1
DOI:10.1109/TMI.2024.3421644
PMID:38949934
|
研究论文 | 提出一种名为多级伪标签一致性(MPC)的框架,用于解决胸部X光图像多标签分类中单阳性标签学习(SPML-CXR)的问题 | 引入单阳性多标签学习(SPML)问题到胸部X光图像分类中,并提出MPC框架,结合图像级、特征级和批次级的扰动一致性正则化来恢复潜在的错误标注阳性标签 | 需要进一步验证在更大规模数据集上的泛化能力,以及在实际临床环境中的应用效果 | 解决胸部X光图像多标签分类中标注成本高和噪声标签问题 | 胸部X光图像 | 计算机视觉 | 肺部疾病 | 深度学习 | Transformer | 图像 | CheXpert和MIMIC-CXR数据集 | NA | NA | NA | NA |