本数据库通过收集和整理最新科研文献信息而得,供了解领域前沿进展之用。数据源自 PubMed Data ,每日自动更新(使用关键词“['deep learning']
”过滤),已收录文献数量参见 统计表格。表格内容由 GPT 自动整理,可能存在错误或遗漏,请使用时务必注意核实!
如有建议或合作意向,欢迎联系 linlin.yan(AT)bioinfo.app 或 微信 yanlinlin82。本项目遵循 MIT 许可 发布,欢迎下载 源码 自行修改使用。如觉得不错,还请不吝 给我打赏,你的支持是我继续创新的重要动力!
除通过在线浏览外,为方便用户离线查阅,本站也提供 付费下载(定价19.9元)。之所以考虑收费,是因为批量扫描这些文献并整理也是有一定成本的,还请理解并多多支持。本站数据会持续更新,而仅需一次付费,未来就可以随时重新下载到最新版本数据。
序号 | 推送日期 | 文章 | 类型 | 简述 | 创新点 | 不足 | 研究目的 | 研究对象 | 领域 | 病种 | 技术 | 模型 | 数据类型 | 样本量 | 算法框架 | 模型架构 | 性能指标 | 计算资源 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
13221 | 2025-04-24 |
Intelligent Recognition of Goji Berry Pests Using CNN With Multi-Graphic-Occlusion Data Augmentation and Multiple Attention Fusion Mechanisms
2025-Aug, Archives of insect biochemistry and physiology
IF:1.5Q4
DOI:10.1002/arch.70060
PMID:40262026
|
研究论文 | 本文提出了一种改进的卷积神经网络(CNN)GojiNet,用于准确识别17种枸杞害虫 | 结合多图遮挡数据增强方法和多注意力融合机制,构建了GojiNet模型,提高了害虫识别的准确率 | 模型训练时间略有增加,且未提及在不同光照或环境条件下的泛化能力 | 解决枸杞害虫识别中传统人工检测方法的主观性、耗时和劳动密集型问题 | 17种枸杞害虫 | 计算机视觉 | NA | 多图遮挡数据增强方法 | CNN(GojiNet,基于ResNet18改进) | 图像 | 未明确提及具体样本数量,但涉及17种害虫的数据集 | NA | NA | NA | NA |
13222 | 2025-04-24 |
Mitigating ambient RNA and doublets effects on single cell transcriptomics analysis in cancer research
2025-Jun-28, Cancer letters
IF:9.1Q1
DOI:10.1016/j.canlet.2025.217693
PMID:40185305
|
research paper | 该论文探讨了在癌症研究中如何减轻单细胞转录组学分析中环境RNA和双联体效应的影响 | 提出了使用计算方法和深度学习技术(如SoupX、DecontX和CellBender)来评估和消除环境RNA污染及背景噪声,提供了一种端到端的数据准备策略 | 未提及具体的技术局限性或数据集的限制 | 旨在提高单细胞转录组学数据的质量,以更准确地描述肿瘤微环境中的异质性,并促进精准肿瘤学的发展 | 单细胞转录组学数据 | 生物信息学 | 癌症 | scRNA-seq, deep learning | NA | 基因表达数据 | NA | NA | NA | NA | NA |
13223 | 2025-04-24 |
SSAT-Swin: Deep Learning-Based Spinal Ultrasound Feature Segmentation for Scoliosis Using Self-Supervised Swin Transformer
2025-06, Ultrasound in medicine & biology
|
research paper | 提出了一种基于自监督Swin Transformer的深度学习模型SSAT-Swin,用于脊柱超声图像特征分割以诊断脊柱侧弯 | 结合边界增强模块和通道注意力模块,并采用自监督代理任务进行预训练,提高了超声图像分割的准确性 | 仅使用了1170张图像进行预训练和109张图像-标签对进行微调,样本量相对有限 | 提高脊柱侧弯超声图像分割的准确性,以辅助诊断 | 脊柱侧弯患者的超声图像 | computer vision | 脊柱侧弯 | 自监督学习 | Swin Transformer | 超声图像 | 预训练1170张图像,微调109张图像-标签对 | NA | NA | NA | NA |
13224 | 2025-04-24 |
Brain tumor segmentation with deep learning: Current approaches and future perspectives
2025-Jun, Journal of neuroscience methods
IF:2.7Q3
DOI:10.1016/j.jneumeth.2025.110424
PMID:40122469
|
综述 | 本文系统回顾了基于深度学习的脑肿瘤分割技术,特别关注网络架构设计 | 全面比较了不同深度学习方法在脑肿瘤分割中的性能,并探讨了U-Net架构的迭代改进及其在医学图像分割中的潜力 | 主要基于BraTS数据集进行评估,可能无法完全代表所有临床场景 | 评估自动脑肿瘤分割技术的现状并展望未来研究方向 | 脑肿瘤MRI图像 | 数字病理学 | 脑肿瘤 | MRI成像 | CNN, U-Net, Transformer | 医学影像 | 主要基于BraTS数据集(具体数量未提及) | NA | NA | NA | NA |
13225 | 2025-04-24 |
Exploring emotional climate recognition in peer conversations through bispectral features and affect dynamics
2025-Jun, Computer methods and programs in biomedicine
IF:4.9Q1
DOI:10.1016/j.cmpb.2025.108695
PMID:40138858
|
研究论文 | 该研究提出了一种名为MLBispec的新方法,用于通过语音信号识别对话中的情感氛围(EC) | MLBispec方法结合了时间窗口双谱分析和情感动态特征,提高了情感识别的准确性 | 研究未提及在嘈杂环境下的性能表现,且跨语言实验的泛化能力有待进一步验证 | 探索并提高人工智能在对话中情感氛围识别的能力 | 对话中的语音信号和情感标注 | 自然语言处理 | NA | 双谱分析,机器学习分类器 | ML | 语音信号 | IEMOCAP、K-EmoCon和SEWA开放数据集 | NA | NA | NA | NA |
13226 | 2025-04-24 |
A Physics-Integrated Deep Learning Approach for Patient-Specific Non-Newtonian Blood Viscosity Assessment using PPG
2025-Jun, Computer methods and programs in biomedicine
IF:4.9Q1
DOI:10.1016/j.cmpb.2025.108740
PMID:40158260
|
研究论文 | 本研究提出了一种结合物理约束的深度学习方法来从PPG数据中提取患者特异性血液粘度方程 | 开发了一种混合1D CNN-LSTM架构,结合了物理约束,将流变学原理整合到数据驱动的PPG分析中 | 在低剪切速率区域的准确性较低(7.84 cP误差),且仅针对特定剪切范围(50-300 s-1)进行了优化 | 通过可穿戴设备非侵入性地测量血液粘度,以监测和诊断循环系统疾病 | PPG数据与血液粘度关系 | 数字病理学 | 心血管疾病 | PPG(光电容积描记术) | 1D CNN-LSTM混合架构 | PPG信号 | NA | NA | NA | NA | NA |
13227 | 2025-04-24 |
Discovery and characterization of novel FAK inhibitors for breast cancer therapy via hybrid virtual screening, biological evaluation and molecular dynamics simulations
2025-Jun-01, Bioorganic chemistry
IF:4.5Q1
DOI:10.1016/j.bioorg.2025.108400
PMID:40163988
|
研究论文 | 通过混合虚拟筛选、生物评估和分子动力学模拟,发现并表征了新型FAK抑制剂用于乳腺癌治疗 | 使用基于结构的高透明度渗透性虚拟筛选(HTVS)和基于几何深度学习的DeepDock算法,发现了一种新的FAK抑制剂骨架 | 仅对10种化合物进行了生物活性评估,样本量较小 | 开发有效的FAK抑制剂用于乳腺癌治疗 | FAK(粘着斑激酶)及其抑制剂 | 药物发现 | 乳腺癌 | 虚拟筛选(HTVS)、DeepDock算法、分子对接、分子动力学模拟 | DeepDock(基于几何深度学习) | 化学化合物数据 | 10种化合物 | NA | NA | NA | NA |
13228 | 2025-04-24 |
Predicting protein-protein interaction with interpretable bilinear attention network
2025-Jun, Computer methods and programs in biomedicine
IF:4.9Q1
DOI:10.1016/j.cmpb.2025.108756
PMID:40174317
|
research paper | 提出了一种名为PPI-BAN的新型端到端框架,通过整合蛋白质序列信息和3D结构信息来预测蛋白质-蛋白质相互作用及其类型 | PPI-BAN首次将蛋白质序列和3D结构信息通过深度双线性注意力网络(BAN)联合学习,明确学习两个蛋白质的重要局部相互作用表示,提高了预测结果的可解释性 | 虽然PPI-BAN表现优异,但其性能仍依赖于蛋白质3D结构预测的准确性,且计算复杂度较高 | 开发一种能够准确预测蛋白质-蛋白质相互作用及其类型的计算方法 | 蛋白质-蛋白质相互作用(PPIs) | 生物信息学 | NA | 一维卷积操作(Conv1D)、几何感知关系图神经网络(GearNet)、深度双线性注意力网络(BAN) | BAN | 蛋白质序列和3D结构数据 | NA | NA | NA | NA | NA |
13229 | 2025-04-24 |
Fusion of multi-scale feature extraction and adaptive multi-channel graph neural network for 12-lead ECG classification
2025-Jun, Computer methods and programs in biomedicine
IF:4.9Q1
DOI:10.1016/j.cmpb.2025.108725
PMID:40184850
|
研究论文 | 提出一种融合多尺度特征提取和自适应多通道图神经网络的12导联心电图分类方法 | 提出多尺度自适应图融合网络(MSAGFN)模型,结合特征图和拓扑图,有效整合12导联心电图的复杂关联 | 未提及具体局限性 | 提高12导联心电图的分类准确率 | 12导联心电图数据 | 机器学习 | 心血管疾病 | 图神经网络 | MSAGFN(多尺度自适应图融合网络)和AMGNN(自适应多通道图神经网络) | 心电图信号 | PTB-XL数据集 | NA | NA | NA | NA |
13230 | 2025-04-24 |
Self-supervised multi-modality learning for multi-label skin lesion classification
2025-Jun, Computer methods and programs in biomedicine
IF:4.9Q1
DOI:10.1016/j.cmpb.2025.108729
PMID:40184849
|
研究论文 | 提出一种自监督学习算法,用于多模态多标签皮肤病变分类,减少对大规模标注数据的依赖 | 通过最大化配对的皮肤镜和临床图像之间的相似性实现多模态自监督学习,并引入新的多模态多标签自监督策略,通过聚类分析生成七个皮肤病变属性的伪多标签 | 算法性能依赖于配对的皮肤镜和临床图像的可用性,且伪标签生成可能受到聚类分析准确性的影响 | 开发一种减少对大规模标注数据依赖的皮肤病变分类方法 | 皮肤病变的多模态图像(皮肤镜和临床图像)及其多标签属性 | 计算机视觉 | 皮肤病变 | 自监督学习(SSL) | CNN | 图像 | 使用经过良好基准测试的七点皮肤病变数据集进行验证 | NA | NA | NA | NA |
13231 | 2025-04-24 |
A first explainable-AI-based workflow integrating forward-forward and backpropagation-trained networks of label-free multiphoton microscopy images to assess human biopsies of rare neuromuscular disease
2025-Jun, Computer methods and programs in biomedicine
IF:4.9Q1
DOI:10.1016/j.cmpb.2025.108733
PMID:40154003
|
研究论文 | 提出了一种基于可解释人工智能的工作流程,结合前向-前向和反向传播训练的卷积网络,用于评估罕见神经肌肉疾病的人类活检图像 | 首次将前向-前向训练应用于生物医学图像,为临床可解释深度学习应用设定了新标准 | 研究样本量较小(16例活检),且仅针对杜氏肌营养不良症 | 提高罕见神经肌肉疾病的诊断准确性,通过标准化特征和表型表达识别 | 人类肌肉活检的多光子显微镜图像 | 数字病理 | 神经肌肉疾病 | 多光子显微镜 | CNN(前向-前向和反向传播训练) | 图像 | 16例人类肌肉活检的1600张图像 | NA | NA | NA | NA |
13232 | 2025-04-24 |
Deep learning-based cytoskeleton segmentation for accurate high-throughput measurement of cytoskeleton density
2025-May, Protoplasma
IF:2.5Q2
DOI:10.1007/s00709-024-02019-9
PMID:39692866
|
研究论文 | 本研究探讨了基于深度学习的细胞骨架分割方法在定量评估细胞骨架组织中的效用 | 采用深度学习技术显著提高了细胞骨架密度测量的准确性,并验证了该方法在不同生理模型中的适用性 | 未提及具体的技术局限性 | 开发一种高精度、高通量的细胞骨架密度测量方法 | 烟草BY-2细胞的皮层微管、拟南芥保卫细胞和受精卵 | 数字病理学 | NA | 共聚焦显微镜成像 | 深度学习模型 | 图像 | 未明确提及具体样本数量 | NA | NA | NA | NA |
13233 | 2025-04-24 |
Artificial Intelligence in CT for Predicting Cervical Lymph Node Metastasis in Papillary Thyroid Cancer Patients: A Meta-analysis
2025-May, Academic radiology
IF:3.8Q1
DOI:10.1016/j.acra.2025.02.007
PMID:40000328
|
meta-analysis | 评估基于CT的人工智能在诊断甲状腺乳头状癌患者颈部淋巴结转移中的诊断性能 | 深度学习模型在敏感性方面优于机器学习方法 | 研究间存在高度异质性,且在不同人群中的外部验证不足 | 评估基于CT的人工智能在诊断甲状腺乳头状癌患者颈部淋巴结转移中的诊断性能 | 甲状腺乳头状癌患者颈部淋巴结转移 | digital pathology | thyroid cancer | CT | deep learning, machine learning | image | 内部验证集1778名患者,外部验证集4072名患者 | NA | NA | NA | NA |
13234 | 2025-04-24 |
Evaluation of AI-based nerve segmentation on ultrasound: relevance of standard metrics in the clinical setting
2025-May, British journal of anaesthesia
IF:9.1Q1
DOI:10.1016/j.bja.2024.12.040
PMID:40016039
|
research paper | 评估基于AI的超声神经分割在临床环境中的相关性,探讨客观像素指标与主观临床评估之间的关系 | 首次研究了客观像素指标与主观临床评估在神经分割中的关系,并尝试确定临床可接受的像素重叠阈值 | 研究样本量有限(173帧图像),且仅分析了被主观评为优秀的案例 | 评估AI神经分割工具在超声引导区域麻醉中的临床应用价值 | 超声图像中的神经结构(臂丛神经、股神经和坐骨神经) | digital pathology | NA | 超声成像 | deep learning | image | 173帧超声图像 | NA | NA | NA | NA |
13235 | 2025-04-24 |
Leveraging Deep Learning in Real-Time Intelligent Bladder Tumor Detection During Cystoscopy: A Diagnostic Study
2025-May, Annals of surgical oncology
IF:3.4Q1
DOI:10.1245/s10434-025-17015-3
PMID:40050483
|
研究论文 | 本研究评估了HRNetV2深度学习模型在膀胱镜检查中智能检测膀胱病变的有效性,重点关注其在不同图像分辨率下的性能 | 首次将HRNetV2模型应用于膀胱病变的实时智能检测,并分析了不同图像分辨率对模型性能的影响 | 研究样本量相对较小(94名患者),且需要在更大规模的多中心数据集上进行进一步验证 | 提高膀胱镜检查中膀胱病变的检测准确率 | 膀胱病变患者 | 数字病理学 | 膀胱癌 | 深度学习 | HRNetV2 | 视频 | 94名患者,102个白光膀胱镜检查视频,33,657帧标注图像 | NA | NA | NA | NA |
13236 | 2025-03-13 |
ASO Visual Abstract: Leveraging Deep Learning in Real-Time Intelligent Bladder Tumor Detection During Cystoscopy-A Diagnostic Study
2025-May, Annals of surgical oncology
IF:3.4Q1
DOI:10.1245/s10434-025-17143-w
PMID:40069466
|
NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
13237 | 2025-04-24 |
Deep learning in nuclear medicine: from imaging to therapy
2025-May, Annals of nuclear medicine
IF:2.5Q2
DOI:10.1007/s12149-025-02031-w
PMID:40080372
|
review | 本文综述了深度学习在核医学领域的最新应用进展,特别是在成像、病灶检测和放射性药物治疗方面 | 深度学习与功能成像技术(如PET和SPECT)的结合,实现了更精确的诊断和个性化治疗策略的开发 | 模型可解释性不足、跨多样化数据集的泛化能力有限、多模态数据融合的挑战以及应用中面临的伦理和法律问题 | 探讨深度学习在核医学中的应用及其对精准医疗、实时治疗监测和临床决策的影响 | 核医学成像、病灶检测和放射性药物治疗 | machine learning | NA | PET, SPECT | neural network | image | NA | NA | NA | NA | NA |
13238 | 2025-04-24 |
[Frozen section in oncologic endocrine surgery]
2025-May, Chirurgie (Heidelberg, Germany)
DOI:10.1007/s00104-025-02266-3
PMID:40131405
|
review | 本文讨论了术中冰冻切片在内分泌肿瘤手术管理中的益处 | 探讨了深度学习在克服冰冻切片技术问题上的潜力,并提供了关于甲状腺手术中冰冻切片应用的最新证据 | 对于甲状旁腺和肾上腺癌的手术治疗,缺乏相关文献支持冰冻切片的作用 | 评估术中冰冻切片在内分泌肿瘤手术中的应用及其效果 | 甲状腺结节、分化型甲状腺癌、髓样甲状腺癌、甲状旁腺和肾上腺癌 | digital pathology | thyroid cancer | frozen section, deep learning | deep learning | image | NA | NA | NA | NA | NA |
13239 | 2025-10-07 |
Fully Automated Agatston Score Calculation From Electrocardiography-Gated Cardiac Computed Tomography Using Deep Learning and Multi-Organ Segmentation: A Validation Study
2025-May, Angiology
IF:2.6Q2
DOI:10.1177/00033197231225286
PMID:38166442
|
研究论文 | 本研究开发了一种基于深度学习的全自动方法,用于从心电图门控心脏CT扫描中计算Agatston钙化积分 | 首次将基于掩模区域的卷积神经网络(R-CNN)用于多器官分割,实现心脏CT中钙化的全自动量化 | 回顾性研究,样本量有限(训练集40例,验证集110例) | 评估深度学习在心脏CT钙化分割和量化中的性能 | 心电图门控心脏CT扫描 | 计算机视觉 | 心血管疾病 | 心脏CT扫描 | CNN, R-CNN | 医学图像 | 训练集40例患者,验证集110例患者 | NA | 基于掩模区域的卷积神经网络(R-CNN) | Pearson相关系数, Bland-Altman分析, 敏感性, 特异性, 风险分类准确率 | NA |
13240 | 2025-04-24 |
Rapid and accurate identification and quantification of Lycium barbarum L. components: Integrating deep learning and NMR for nutritional assessment
2025-May, Food research international (Ottawa, Ont.)
DOI:10.1016/j.foodres.2025.116246
PMID:40263805
|
研究论文 | 本研究提出了一种结合深度学习和核磁共振光谱的创新方法IQ-LC模型,用于快速准确识别和量化枸杞成分,并评估不同食用方式的营养价值 | 整合NMR光谱与一维卷积神经网络,开发了IQ-LC模型,实现了枸杞成分的高精度识别与量化 | 未提及模型在其他植物成分分析中的泛化能力 | 开发快速准确的枸杞成分分析方法并评估不同食用方式的营养价值 | 枸杞及其制品(鲜果、果泥和茶) | 食品科学与营养分析 | NA | NMR光谱 | 一维CNN | 光谱数据 | 25种已知浓度混合物+10个商业品牌枸杞果泥 | NA | NA | NA | NA |